Меню

Абсолютная влажность под давлением

Абсолютная влажность под давлением

Точка росы под давлением [°Cтрд] — это температура, до которой сжатый воздух может быть охлажден без образования конденсата. Точка росы зависит от давления процесса. Когда давление падает, точка росы также снижается.

Говоря о системах под давлением, мы имеем в виду точку росы под давлением, но не атмосферную точку росы. Описание различий между этими двумя физическими параметрами приводится ниже.

2. Атмосферная точка росы [°CtdA]

Атмосферная точка росы [°CтрА] – температура, до которой атмосферный воздух (воздух под давлением приблиз. 1 бар абс.) может быть охлажден без образования конденсата.

2.1 Разница между точкой росы под давлением и атмосферной точкой росы

Точка росы под давлением или атмосферная точка росы? Атмосферный воздух способен удерживать больше паров воды нежели сжатый воздух. По мере охлаждения сжатый воздух достигает точки росы при более высоком значении температуры (“точка росы” в °Cтр или °Fтр), в то время как атмосферный воздух может быть подвержен дальнейшему охлаждению до момента образования конденсата (атмосферная точка росы, в °Cтр или °Fтр).

Для мониторинга систем сжатого воздуха важным является значение точки росы под давлением, поскольку она является индикатором удаленности от “опасного порога“ (= точки росы). Тем не менее, некоторым пользователям требуются данные с указанием непосредственно атмосферной точки росы – testo 6740 предоставляет возможность выбора выходного параметра, т.е. пользователь может выбрать точку росы под давлением или же атмосферную точку росы (для последней через меню управления вводится значение давления процесса).

Рассмотрим куб с 1 м 3 воздуха при температуре 20 °C и 20 % относительной влажности. Эти условия соответствуют содержанию в нем 3 граммов водяного пара, при том воздух может содержать максимум 15 г/м 3 при 20 °C (насыщение влажностью в зависимости от температуры).

В случае А (атмосферная точка росы):

Давление остается постоянным (1 бар), куб охлаждается до температуры точки росы. 3 г водяного пара также может содержаться в 1 м 3 T, как и при первоначальной температуре, с охлаждением же снижается способность воздуха содержать влагу. При. -3.2 °C, только 3 г водяного пара может быть в воздухе.

Куб воздуха достигает точки росы и начинает выделять конденсат. Эта точка росы носит название атмосферной (-3.2 °Cтр), поскольку процесс происходит при атмосферном давлении.

Читайте также:  Повышенное давление в системе это

В случае В: (точка росы под давлением):

Давление поднимается до 3 бар, вызывая уменьшение объема куба до 1/3 от его изначального размера. Даже после сжатия воздушный куб сохраняет массу водяного пара в 3 г (влага не была добавлена или извлечена), при этом значение абсолютной влажности теперь: 3 г/(1/3м 3 ) = 9 г/м 3 .

Поскольку температура до сих пор 20 °C и насыщение (максимально возможное содержание влаги) зависит только от температуры, 15 г/м 3 водяного пара могут находиться в воздушном кубе. Таким образом, относительная влажность 9/15 = 60%ОВ, т.е. изменение давления с 1 бара на 3 привело к повышению относительной влажности в 3 раза.

Если охладить сжатый куб воздуха, то он достигнет точки росы уже при 12 °Ctd, при которых воздух достигает своего насыщения (9 г/м 3 = макс. возможное содержание влаги).

Это явно указывает на то, что повышение давления поднимает температуру точки росы. Таким образом, при постоянной температуре процесса удаленность от критического значения (температурная дистанция до точки росы) становится меньше!

2.2 Преобразование точки росы под давлением в атмосферную точку росы

2.3 Точка росы и относительная влажность

Точка росы сжатого воздуха – это температура, при которой вода конденсируется из сжатого воздуха. Она зависит от относительной влажности и температуры процесса (см. диаграмму ниже). Чем ниже относительная влажность, тем меньше точка росы (при постоянном давлении и температуре процесса).

Как показывает диаграмма, переменная влажности “точка росы” обеспечивает в значительной степени большую разрешающую способность, чем относительная влажность в диапазоне низкой влажности ( 3 (25 °C), что соответствует 100% относительной влажности.

Увеличение давления не влияет на атмосферную точку росы. Изменяется только точка росы под давлением.

Пример: воздух с атмосферной точкой росы 0 °Cтр сжимается с 1 до 3 бар. Это утраивает значение абсолютной влажности с 4440 мг/м 3 (1) до 13320 мг/м 3 (2).

Соотношение атмосферной точки росы и абсолютной влажности при температуре процесса 25 °C

3. Психрометрическая диаграмма (диаграмма Молье) для систем под давлением

Традиционные психрометрические диаграммы верны только при одном уровне давления, обычно при атмосферном давлении (применение в области технологий кондиционирования воздуха, см. “Стационарные технологии для измерения влажности, дифференциального давления и температуры”).

Психрометрическая диаграмма ниже показывает соотношение разных переменных влажности (точка росы [°Cтр],относительная влажность [%ОВ] и степень влажности [г/кг] также, как и температура [°C] ) в том числе при неатмосферном давлении.

Читайте также:  Защита манометра при скачке давления

4. Вычисление точки росы [°Cтр]

Разница в подсчете точки росы/точки образования инея

Если температура точки росы выше 0 °Cтр, задается температура точки росы; в случае же, если она ниже 0 °Cтр, задается температура точки образования инея.

Для температур точки росы, значения, полученные с помощью testo 6740 и зеркала точки росы, совпадают при соблюдении погрешности измерений.

В редких случаях различия между testo 6740 и зеркалом точки росы могут иметь место в температурах точки образования инея между -35 °C и 0 °C. Это происходит, когда (при температурах 3 ]

Абсолютная влажность [г/м 3 ] указывает на фактическое количество граммов воды в одном кубическом метре сухого воздуха или сухого газа.

Поскольку при измерениях в диапазоне остаточной влажности мы имеем дело с очень небольшими значениями абсолютной влажности, testo 6740 показывает абсолютную влажность в мг/м 3 .

7. Зависимость параметров влажности от давления

Сенсор влажности testo измеряет относительную влажность %ОВ напрямую (без необходимости в “знании”/введении значения давления). Поскольку этот параметр зависит от давления, все зависящие от давления параметры (°Cтр, г/м 3 ,%ОВ) также подсчитываются без ввода данных о давлении. Для параметров влажности, не зависящих от давления (ppm, °Ctd = температура атмосферной точки росы), тем не менее, необходимо выполнять корректировку давления путем ввода абсолютного давления (через меню управления/градуировочный адаптер) (см. изображение).

8. Реакция параметров влажности на изменение давления и/или температуры

В таблице ниже приведены сведения о реакции параметров влажности при изменении давления и/или температуры. Атмосферная точка росы и влагосодержание не зависят от давления и температуры.

Источник

Абсолютная и относительная влажность

Величина влагоемкости воздуха резко возрастает с увеличением его температуры. Отношение величины абсолютной влажности воздуха при данной температуре к величине его влагоемкости при той же температуре называется относительной влажностью воздуха.

Для определения температуры и относительной влажности воздуха пользуются специальным прибором — психрометром. Психрометр состоит из двух термометров. Шарик одного из них увлажняется с помощью марлевого чехла, конец которого опущен в сосуд с водой. Другой термометр остается сухим и показывает температуру окружающего воздуха. Смоченный термометр показывает температуру более низкую, чем сухой, так как испарение влаги из марли требует определенного расхода тепла. Температура смоченного термометра носит название предела охлаждения. Разность между показаниями сухого и смоченного термометров называется психрометрической разностью.

Читайте также:  Давление в шине и 506

Между величиной психрометрической разности и относительной влажностью воздуха имеется определенная зависимость. Чем больше психрометрическая разность при данной температуре воздуха, тем меньше относительная влажность воздуха и тем больше влаги может поглотить воздух. При разности равной нулю воздух насыщен водяным паром и дальнейшего испарения влаги в таком воздухе не происходит.

Абсолютная влажность

Относительная влажность

Что такое точка росы

Источник

Влажность углеводородных газов и жидкостей. Гидратообразование

Все углеводородные газы в реальных условиях содержат водяной пар. Его количество при заданных температуре и давлении газа строго определенно. Насыщение газов водяным паром возможно до предельного давления, равного упругости насыщенного пара при заданной температуре. Различают абсолютную и относительную влажность газов.

Абсолютная влажность газа — количество водяных паров в единице объема/массы газа (соответственно, абсолютная объемная, г/м 3 ,/абсолютная массовая влажность, г/кг).

Относительная влажность газа φ (степень насыщения газа водяными парами), доля единицы или процент, — отношение фактически содержащегося в газе количества водяного пара к максимально возможному при заданных температуре и давлении. Относительную влажность газа можно выразить через отношение парциального давления Pi находящегося в газе водяного пара к давлению Pнас насыщенного пара при той же температуре, т. е. φ = Pi /Pнас. Для воздуха (при атмосферном давлении), насыщенного водяным паром (φ = 1), абсолютная объемная влажность и упругость паров в зависимости от температуры приведены в табл. 2.11. На практике и для других газов, если они находятся под давлением, близким к атмосферному, можно пользоваться данными табл. 2.11. Для углеводородных газов отклонение от табличных данных тем больше, чем выше в них содержание углерода.

Сжиженные газы (жидкости) способны растворять некоторое количество воды, увеличивающееся с повышением температуры. Например, для жидкой фазы пропана справедлива эмпирическая зависимость, приведенная в табл. 2.12.

Содержание воды в 1 кг паров углеводородов значительно превышает таковое в 1 кг жидкости. Следовательно, при наличии в сжиженных углеводородах воды в растворенном виде она будет достаточно интенсивно переходить из жидкой фазы в паровую фазу (табл. 2.13). Этими данными с достаточной для практики точностью можно руководствоваться и для других углеводородов, а также для их смесей.

Таблица 2.11. Упругость водяных паров и влагосодержание в состоянии насыщения

Источник

Adblock
detector