Виды давления. Абсолютное, избыточное и вакууметрическое давление
В самых разнообразных областях техники и науки, в самых разных технических приборах и сооружениях требуется проводить измерения давления жидкостей или газов. В зависимости от назначения инженеры должны иметь возможность проводить измерения давления и использовать соответствующие единицы для точного отображения этих показаний, а также уметь правильно или оперировать.
Единицы измерения давления
Гидростатическое давление, как и напряжение, в системе СГС измеряется в дин/см 2 , в системе МКГСС — кгс/м 2 , в системе СИ — Па. Кроме того, гидростатическое давление измеряется в кгс/см 2 , высотой столба жидкости (в м вод. ст., мм рт.ст. и т. д.) и, наконец, в атмосферах физических (атм) и технических (ат) (в гидравлике пока еще преимущественно пользуются последней единицей). Для перевода одних единиц измерения давления в другие Вы можете воспользоваться нашим конвертером давлений. В ней есть возможность перевести бар, Psi. ат в Па, МПа в м.вод. столба или ртутного столба и т.д.
Абсолютное значение
Абсолютное давление ─ это истинное давление жидкостей, паров или газов, которое отсчитывается от абсолютного нуля давления (абсолютного вакуума).
Избыточное давление
Разность между абсолютным давлением p и атмосферным давлением pа называется избыточным давлением и обозначается ризб:
hп в этом случае называется пьезометрической высотой, которая является мерой избыточного давления.
На рисунке показан закрытый резервуар с жидкостью, на поверхности которой давление p0. Подключенный к резервуару пьезометр П (см. рис. ниже) определяет избыточное давление в точке А.
Абсолютное и избыточное давления, выраженные в атмосферах, обозначаются соответственно ата и ати.
Вакууметрическое давление
Вакуумметрическое давление, или вакуум, — недостаток давления до атмосферного (дефицит давления), т. е. разность между атмосферным или барометрическим и абсолютным давлением:
где hвак — вакуумметрическая высота, т. е. показание вакуумметра В, подключенного к резервуару, показанному на рисунке ниже. Вакуум выражается в тех же единицах, что и давление, а также в долях или процентах атмосферы.
Из выражений последних двух выражений следует, что вакуум может изменяться от нуля до атмосферного давления; максимальное значение hвак при нормальном атмосферном давлении (760 мм рт. ст.) равно 10,33 м вод. ст.
Инфографика для лучшего запоминания и понимания.
Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.
Источник
Абсолютное давление — формула и примеры расчетов
Любое вещество может быть описано своими физико-химическим параметрами. В отличие от жидких и твердых веществ, чье состояние может быть охарактеризовано температурой и плотностью, газы имеют еще один показатель, который называется «давление». Эта физическая величина для газообразного вещества может быть представлена итоговым значением сил ударов молекул о стенки сосуда, содержащего газ. Чем больше молекул ударяется о стенки, чем больше их масса, скорость и сила воздействия на стенки сосуда– тем выше показатель давления.
Классификация
Физики различают атмосферное, абсолютное и избыточное давление. Эти виды величин связаны между собой посредством физических формул.
Единицы измерения давления
Существует множество традиционных единиц давления, которые сложились в результате развития физических дисциплин. Наиболее распространенными их них являются «бар», «атмосфера», «мм ртутного столба» и другие производные от них величины. В физических процессах этот параметр обозначается литерой Р, измеряется в паскалях и производных от него единицах. В письменном виде паскаль отображается так: [Па].
Понятие атмосферного давления
Окружающий нас воздух состоит из постоянно движущихся молекул, которые сталкиваются с земной поверхностью,находящимися на ней предметами и между собой. Из ударов крохотных частиц складывается итоговое давление. Данный параметр называется атмосферными, или барометрическим давлением.
Но, как показали измерения, Ратм в значительной степени зависит от температуры окружающей среды и высоты над уровнем моря. Поэтому для объяснения физических процессов и решения задач текущие параметры атмосферного давления сводят к нормальным условиям. Начальные параметры Ратм определяются при показателе температуры 0⁰ С над нулевым уровнем моря.
Что такое абсолютное давление
Стандартные способы измерения давления обычно используют атмосферное давление в качестве точки отсчета. Обычно этот параметр измеряется различными приборами. Наиболее популярными из которых являются барометры.
В других случаях применяют отношение наблюдаемого давления к вакууму или к другой выбранной отметке. Чтобы обозначить выбранные категории, применяют такие определения:
- Абсолютное давление газа: является параметром точки перехода между вакуумом и наблюдаемым давлением.
- Избыточное давление: для него точкой отсчета становится давление атмосферное. Вычисляется этот показатель как разность между абсолютным и атмосферным давлением.
Дифференциальное, абсолютное и избыточное давление визуально может быть представлено так:
Избыточное и абсолютное давление логически связаны между собой. Значение абсолютного давления можно получить, измерив наблюдаемое давление и прибавив к нему величину атмосферного Р.
В случае избыточного давления точкой отсчета служит значение атмосферного P. Таким образом, эта величина может быть представлена как разность между абсолютным давлением и атмосферным. Абсолютное и избыточное давление не может быть отрицательным. При Рабс=0 давление становится равным атмосферному показателю этой величины. Если быть точным, то Рабс не может быть равно вакууму – всегда остается какая-то величина, сформированная, например, давлением насыщенных паров в жидкости. Но в случае тяжелых жидкостей этот параметр очень незначителен, поэтому в первоначальных расчетах, не требующих точного вычисления, вполне допустимо.
Что такое абсолютное давление воздуха
Абсолютное давление воздуха можно измерить лишь в сосудах с другими веществами – с жидкостями или газами. Так, данный параметр довольно часто измеряется в закрытых сосудах с жидкостями. Как и в первом случае, абсолютное давление воздуха в закрытом сосуде можно измерить,как разницу между наблюдаемым Р и атмосферным.
Пьезометрическая высота
Как это часто бывает, наряду с общепринятыми единицами измерения физических величин, используются и исторические. Пьезометрическая высота -это одна из таких величин. Она может быть измерена специальным прибором, представляющим собой стеклянную трубку, верхняя часть которой незапечатана и открыто сообщается с атмосферой, а нижняя присоединена к сосуду, в котором измеряется давление. Прибор, при помощи которого можно провести подобные измерения, представлен ниже:
Если к давлению, наблюдаемому в сосуде, применить законы гидростатики, можно получить такое выражение для абсолютного давления:
Здесь ра – атмосферное давление, а выражение gρhp представляет собой произведение высоты столба жидкости на ее плотность и на значение силы тяжести. Так можно измерить абсолютное значение газа в любом сосуде.
Источник
Гидростатическое давление: атмосферное, избыточное, вакууметрическое, абсолютное.
Давление в жидкости измеряется приборами:
Пьезометры и манометры измеряют избыточное (манометрическое) давление, то есть они работают, если полное давление в жидкости превышает величину, равную одной атмосфере p = 1 кгс/см2= 0,1 МПа. Эти приборы показывают долю давления сверх атмосферного. Для измерения в жидкости полного давления p необходимо к манометрическому давлению pман прибавить атмосферное давление pатм, снятое с барометра. Практически же в гидравлике атмосферное давление считается величиной постоянной pатм= =101325 » 100000 Па.
Пьезометр обычно представляет собой вертикальную стеклянную трубку, нижняя часть которой сообщается с исследуемой точкой в жидкости, где нужно измерить давление (например, точка А на рис. 2), а верхняя её часть открыта в атмосферу. Высота столба жидкости в пьезометре hp является показанием этого прибора и позволяет измерять избыточное (манометрическое) давление в точке по соотношению ,
где hp — пьезометрический напор (высота), м.
Упомянутые пьезометры применяются главным образом для лабораторных исследований. Их верхний предел измерения ограничен высотой до 5 м, однако их преимущество перед манометрами состоит в непосредственном измерении давления с помощью пьезометрической высоты столба жидкости без промежуточных передаточных механизмов.
В качестве пьезометра может быть использован любой колодец, котлован, скважина с водой или даже любое измерение глубины воды в открытом резервуаре, так как оно даёт нам величину hp .
Манометрычаще всего применяются механические, реже — жидкостные. Все манометры измеряют не полное давление, а избыточное .
Преимуществами их перед пьезометрами являются более широкие пределы измерения, однако есть и недостаток: они требуют контроля их показаний. Манометры, выпускаемые в последнее время, градуируются в единицах СИ: МПа или кПа (см. на с. 54). Однако ещё продолжают применяться и старые манометры со шкалой в кгс/см2, они удобны тем, что эта единица равна одной атмосфере (см. с. 8). Нулевое показание любого манометра соответствует полному давлению p, равному одной атмосфере.
Вакуумметр по своему внешнему виду напоминает манометр, а показывает он ту долю давления, которая дополняет полное давление в жидкости до величины одной атмосферы. Вакуум в жидкости — это не пустота, а такое состояние жидкости, когда полное давление в ней меньше атмосферного на величину pв, которая измеряется вакуумметром. Вакуумметрическое давление pв, показываемое прибором, связано с полным и атмосферным так:
.
Величина вакуума pв не может быть быть больше 1 ат, то есть предельное значение pв » 100000 Па, так как полное давление не может быть меньше абсолютного нуля.
Приведём примеры снятия показаний с приборов:
— пьезометр, показывающий hp=160 см вод. ст., соответствует в единицах СИ давлениям pизб=16000 Па и p= 100000+16000=116000 Па;
— манометр с показаниями pман = 2,5 кгс/см2 соответствует водяному столбу hp=25 м и полному давлению в СИ p = 0,35 МПа;
— вакуумметр, показывающий pв=0,04 МПа, соответствует полному давлению p=100000-40000=60000 Па, что составляет 60 % от атмосферного.
Если давление Р отсчитывают от абсолютного нуля, то его называют абсолютным давлением Рабс. Если давление отсчитывают от атмосферного, то оно называется избыточным (манометрическим) Ризб. Оно измеряется манометром. Атмосферное давление постоянно Ратм = 103 кПа (рис.1.5). Вакуумметрическое давление Рвак — недостаток давления до атмосферного.
6.Основное уравнение гидростатики (вывод). Закон Паскаля. Гидростатический парадокс. Героновы фонтаны, устройство, принцип действия.
Основное уравнение гидростатики гласит, что полное давление в жидкости p равно сумме внешнего давления на жидкость poи давления веса столба жидкости pж, то есть: , где h — высота столба жидкости над точкой (глубина её погружения), в которой определяется давление. Из уравнения следует, что давление в жидкости увеличивается с глубиной и зависимость является линейной.
В частном случае для открытых резервуаров, сообщающихся с атмосферой (рис. 2), внешнее давление на жидкость равно атмосферному давлению po = pатм = 101325 Па 1 ат. Тогда основное уравнение гидростатики принимает вид
.
Избыточное давление (манометрическое) есть разность между полным и атмосферным давлением. Из последнего уравнения получаем, что для открытых резервуаров избыточное давление равно давлению столба жидкости
.
Закон Паскаля звучит так: внешнее давление, приложенное к жидкости, находящейся в замкнутом резервуаре, передаётся внутри жидкости во все её точки без изменения. На этом законе основано действие многих гидравлических устройств: гидродомкратов, гидропрессов, гидропривода машин, тормозных систем автомобилей.
Гидростатический парадокс — свойство жидкостей, заключающееся в том, что сила тяжести жидкости, налитой в сосуд, может отличаться от силы, с которой эта жидкость действует на дно сосуда.
Героновы фонтаны. Знаменитый ученый древности Герон Александрийский придумал оригинальную конструкцию фонтана, которая находит применение и в наши дни.
Главное чудо этого фонтана заключалось в том, что вода из фонтана била сама, без использования, какого либо внешнего источника воды. Принцип работы фонтана хорошо виден на рисунке.
Схема устройства фонтана Герона
Геронов фонтан состоит из открытой чаши и двух герметичных сосудов расположенных под чашей. Из верхней чаши в нижнюю емкость, идет полностью герметичная трубка. Если налить в верхнюю чашу воды, то вода по трубке начинает стекать в нижнюю емкость, вытесняя оттуда воздух. Поскольку сама нижняя емкость полностью герметична, то воздух выталкиваемый водой, по герметичной трубке, передает воздушное давление в среднюю чашу. Давление воздуха в средней емкости начинает выталкивать воду, и фонтан начинает работать. Если для начала работы, в верхнюю чашу требовалось налить воды, то для дальнейшей работы фонтана, уже использовалась вода попадавшая в чашу из средней емкости. Как видно устройство фонтана очень простое, но это только на первый взгляд.
Подъем воды в верхнюю чашу осуществляется за счет напора воды высотой H1, при этом воду фонтан поднимает на гораздо большую высоту H2, что на первый взгляд кажется невозможным. Ведь на это должно потребоваться гораздо большее давление. Фонтан не должен работать. Но знание древних Греков оказалось столь высоко, что они догадались передавать давление воды из нижнего сосуда, в средний сосуд, не водой, а воздухом. Поскольку вес воздуха значительно ниже веса воды, потери давления на этом участке получаются очень незначительными, и фонтан бьет из чаши на высоту H3. Высота струи фонтана H3, без учета потерь давления в трубках, будет равна высоте напора воды H1.
Таким образом, чтобы вода фонтана била максимально высоко, необходимо как можно выше сделать конструкцию фонтана, тем самым увеличив расстояние H1. Кроме того, нужно как можно выше поднять средний сосуд. Что касается закона физики о сохранении энергии, то он полностью соблюдается. Вода из среднего сосуда, под действием гравитации стекает в нижний сосуд. То, что она проделывает этот путь через верхнюю чашу, и при этом бьет там фонтаном, ни сколько не противоречит закону о сохранении энергии. Когда вся вода из среднего сосуда, перетечет в нижний, и фонтан перестанет работать.
7. Приборы, применяемые для измерения давления (атмосферного, избыточного, вакууметрического). Устройство, принцип действия. Класс точности приборов.
Давление в жидкости измеряется приборами:
Пьезометры и манометры измеряют избыточное (манометрическое) давление, то есть они работают, если полное давление в жидкости превышает величину, равную одной атмосфере p = 1 кгс/см2= 0,1 МПа. Эти приборы показывают долю давления сверх атмосферного. Для измерения в жидкости полного давления p необходимо к манометрическому давлению pман прибавить атмосферное давление pатм, снятое с барометра. Практически же в гидравлике атмосферное давление считается величиной постоянной pатм= =101325 » 100000 Па.
Пьезометр обычно представляет собой вертикальную стеклянную трубку, нижняя часть которой сообщается с исследуемой точкой в жидкости, где нужно измерить давление (например, точка А на рис. 2), а верхняя её часть открыта в атмосферу. Высота столба жидкости в пьезометре hp является показанием этого прибора и позволяет измерять избыточное (манометрическое) давление в точке по соотношению
где hp — пьезометрический напор (высота), м.
Упомянутые пьезометры применяются главным образом для лабораторных исследований. Их верхний предел измерения ограничен высотой до 5 м, однако их преимущество перед манометрами состоит в непосредственном измерении давления с помощью пьезометрической высоты столба жидкости без промежуточных передаточных механизмов.
В качестве пьезометра может быть использован любой колодец, котлован, скважина с водой или даже любое измерение глубины воды в открытом резервуаре, так как оно даёт нам величину hp .
Манометрычаще всего применяются механические, реже — жидкостные. Все манометры измеряют не полное давление, а избыточное .
Преимуществами их перед пьезометрами являются более широкие пределы измерения, однако есть и недостаток: они требуют контроля их показаний. Манометры, выпускаемые в последнее время, градуируются в единицах СИ: МПа или кПа. Однако ещё продолжают применяться и старые манометры со шкалой в кгс/см2, они удобны тем, что эта единица равна одной атмосфере. Нулевое показание любого манометра соответствует полному давлению p, равному одной атмосфере.
Вакуумметр по своему внешнему виду напоминает манометр, а показывает он ту долю давления, которая дополняет полное давление в жидкости до величины одной атмосферы. Вакуум в жидкости — это не пустота, а такое состояние жидкости, когда полное давление в ней меньше атмосферного на величину pв, которая измеряется вакуумметром. Вакуумметрическое давление pв, показываемое прибором, связано с полным и атмосферным так: .
Величина вакуума pв не может быть быть больше 1 ат, то есть предельное значение pв » 100000 Па, так как полное давление не может быть меньше абсолютного нуля.
Приведём примеры снятия показаний с приборов:
— пьезометр, показывающий hp=160 см вод. ст., соответствует в единицах СИ давлениям pизб=16000 Па и p= 100000+16000=116000 Па;
— манометр с показаниями pман = 2,5 кгс/см2 соответствует водяному столбу hp=25 м и полному давлению в СИ p = 0,35 МПа;
— вакуумметр, показывающий pв=0,04 МПа, соответствует полному давлению p=100000-40000=60000 Па, что составляет 60 % от атмосферного.
8.Дифференциальные уравнения покоящейся идеальной жидкости (Уравнения Л.Эйлера). Вывод уравнений, пример применения уравнений для решения практических задач.
Рассмотрим движение идеальной жидкости. Выделим внутри неё некоторый объём V. Согласно второму закону Ньютона, ускорение центра масс этого объёма пропорционально полной силе, действующей на него. В случае идеальной жидкости эта сила сводится к давлению окружающей объём жидкости и, возможно, воздействию внешних силовых полей. Предположим, что это поле представляет собой силы инерции или гравитации, так что эта сила пропорциональна напряжённости поля и массе элемента объёма. Тогда
,
где S — поверхность выделенного объёма, g — напряжённость поля. Переходя, согласно формуле Гаусса — Остроградского, от поверхностного интеграла к объёмному и учитывая, что , где
— плотность жидкости в данной точке, получим:
В силу произвольности объёма V подынтегральные функции должны быть равны в любой точке:
Выражая полную производную через конвективную производную и частную производную:
получаем уравнение Эйлера для движения идеальной жидкости в поле тяжести:
|
где — плотность жидкости,
— давление в жидкости,
— вектор скорости жидкости,
— вектор напряжённости силового поля,
— оператор набла для трёхмерного пространства.
Определение силы гидростатического давления на плоскую стенку, расположенную под углом к горизонту. Центр давления. Положение центра давления в случае прямоугольной площадки, верхняя кромка которой лежит на уровне свободной поверхности.
Используем основное уравнение гидростатики (2.1) для нахождения полной силы давления жидкости на плоскую стенку, наклоненную к горизонту под произвольным углом a (рис. 2.6).
|
Рис. 2.6
Вычислим полную силу P давления, действующую со стороны жидкости на некоторый участок рассматриваемой стенки, ограниченный произвольным контуром и имеющий площадь, равную S.
Ось 0x направим по линии пересечения плоскости стенки со свободной поверхностью жидкости, а ось 0y – перпендикулярно этой линии в плоскости стенки.
Выразим сначала элементарную силу давления, приложенную к бесконечно малой площадке dS:
,
где p0 – давление на свободной поверхности;
h – глубина расположения площадки dS.
Для определения полной силы P выполним интегрирование по всей площади S.
,
где y – координата центра площадки dS.
Последний интеграл, как известно из механики, представляет собой статический момент площади S относительно оси 0x и равен произведению этой площади на координату ее центра тяжести (точка С), т. е.
Следовательно,
(здесь hc – глубина расположения центра тяжести площади S), или
(2.6)
т. е. полная сила давления жидкости на плоскую стенку равна произведению площади стенки на величину гидростатического давления в центре тяжести этой площади.
Найдем положение центра давления. Так как внешнее давление p0 передается всем точкам площади S одинаково, то равнодействующая этого давления будет приложена в центре тяжести площади S. Для нахождения точки приложения силы избыточного давления жидкости (точка D) применим уравнение механики, согласно которому момент равнодействующей силы давления относительно оси 0x равен сумме моментов составляющих сил, т. е.
где yD – координата точки приложения силы Pизб.
Выражая Pизб и dPизб через yc и y и определяя yD, получим
где — момент инерции площади S относительно оси 0x.
Учитывая, что
(Jx0 – момент инерции площади S относительно центральной оси, параллельной 0x), получим
(2.7)
Таким образом, точка приложения силы Pизб расположена ниже центра тяжести площади стенки; расстояние между ними равно
Если давление p0 равно атмосферному, и оно действует с обеих сторон стенки, то точка D и будет центром давления. Когда же p0 выше атмосферного, то центр давления находится по правилам механики как точка приложения равнодействующей двух сил: hcgS и p0S. При этом, чем больше вторая сила по сравнению с первой, тем ближе центр давления к центру тяжести площади S.
В частном случае, когда стенка имеет прямоугольную форму, причем одна из сторон прямоугольника совпадает со свободной поверхностью жидкости, положение центра давления находится из геометрических соображений. Так как эпюра давления жидкости на стенку изображается прямоугольным треугольником (рис. 2.7), центр тяжести которого отстоит от основания на 1/3 высоты b треугольника, то и центр давления жидкости будет расположен на том же расстоянии от основания.
|
Рис. 2.7
В машиностроении часто приходится сталкиваться с действием силы давления на плоские стенки, например на стенки поршней или цилиндров гидравлических машин. Обычно p0 при этом бывает настолько высоким, что центр давления можно считать совпадающим с центром тяжести площади стенки.
Центр давления
точка, в которой линия действия равнодействующей приложенных к покоящемуся или движущемуся телу сил давления окружающей среды (жидкости, газа), пересекается с некоторой проведённой в теле плоскостью. Например, для крыла самолёта (рис.) Ц. д. определяют как точку пересечения линии действия аэродинамической силы с плоскостью хорд крыла; для тела вращения (корпус ракеты, дирижабля, мины и др.) — как точку пересечения аэродинамической силы с плоскостью симметрии тела, перпендикулярной к плоскости, проходящей через ось симметрии и вектор скорости центра тяжести тела.
Положение Ц. д. зависит от формы тела, а у движущегося тела может ещё зависеть от направления движения и от свойств окружающей среды (её сжимаемости). Так, у крыла самолёта, в зависимости от форм его профиля, положение Ц. д. может изменяться с изменением угла атаки α, а может оставаться неизменным («профиль с постоянным Ц. д.»); в последнем случае хцд ≈ 0,25b (рис.). При движении со сверхзвуковой скоростью Ц. д. значительно смещается к хвосту из-за влияния сжимаемости воздуха.
Изменение положения Ц. д. у движущихся объектов (самолёт, ракета, мина и др.) существенно влияет на устойчивость их движения. Чтобы их движение было устойчивым при случайном изменении угла атаки а, Ц. д. должен сместиться так, чтобы момент аэродинамической силы относительно центра тяжести вызвал возвращение объекта в исходное положение (например, при увеличении а Ц. д. должен сместиться к хвосту). Для обеспечения устойчивости объект часто снабжают соответствующим хвостовым оперением.
Лит.: Лойцянский Л. Г., Механика жидкости и газа, 3 изд., М., 1970; Голубев В. В., Лекции по теории крыла, М. — Л., 1949.
Положение центра давления потока на крыло: b — хорда; α — угол атаки; ν — вектор скорости потока; хдц — расстояние центра давления от носика тела.
10. Определение силы гидростатического давления на криволинейную поверхность. Эксцентриситет. Объем тела давления.
Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы
Источник