Меню

Ардуино датчик давления воздуха bmp180

Подключение BMP180 датчик давления и температуры к Arduino.

Датчик абсолютного давления и температуры (последним сегодня уже никого не удивишь) Bosch BMP180 . Датчик не нов и хорошо известен, datasheet изучен вдоль и поперек, а библиотек целая куча.

Характеристики :
  • Диапазон измерения давления: 300 – 1100 hPa.
  • Напряжение питания: от 1.8 — 3.3 и 5V (если на плате стоит стабилизатор напряжения).
  • Низкое энергопотребление: 3 мкА (режим ультра-низкого энергопотребления)
  • Точность: режим пониженного энергопотребления, разрешение 0.06hPa (0,5 м).
  • Высокий линейный режим с разрешением 0.02hPa (0,17 м).
  • Подключение: интерфейс I2C.
  • Возможность измерения температуры в диапазоне -40 … +85 ° C.
  • Время отклика: 5ms — 7.5ms (standart mode).
  • Ток в режиме ожидания: 0,1 мкA

Более подробно можно прочитать в Datasheet.

Принцип действия датчика BMP180:

В датчике имеется герметичная камера, одна из стенок которой является гибкой мембраной с установленными на ней тензодатчиками. Мембрана прогибается пропорционально разности давлений внутри камеры и снаружи, что влияет на изменение сопротивления тензодатчиков электрическому току. Так же имеется термодатчик, сопротивление которого меняется пропорционально температуре. АЦП (аналого-цифровой преобразователь) переводит результаты изменений датчиков в цифровые данные « некомпенсированные результаты », которые доступны для чтения из регистров датчика: «Out MSB», «Out LSB» и «Out xLSB». Для компенсации указанных результатов (компенсации смещения, температурной зависимости, погрешностей при изготовлении, неоднородностей материалов и т.д.) каждый датчик калибруется на заводе, и в EEPROM записываются индивидуальные для каждого датчика 11 калибровочных коэффициентов
(176 бит) , которые доступны для чтения из регистров датчика: «AC1», «AC2», «AC3», «AC4», «AC5», «AC6», «B1», «B2», «MB», «MC», «MD».

Не допускайте попадания на датчик влаги и прямых солнечных лучей.

Алгоритм получения данных:

Чтение значений из одноименных регистров:
short AC1, AC2, AC3, B1, B2, MB, MC, MD;
unsigned short AC4, AC5, AC6;

  • Чтение температуры: (некомпенсированное значение)

Записываем в регистр «Measurement Control» значение: 0x2E;
Ожидаем спад флага состояния «CSO» в «0»;
Читаем результат из регистров «Out MSB» и «Out LSB»;

  • Чтение давления: (некомпенсированное значение)

Записываем в регистр «Measurement Control» значение: 0x34 + (OSS > (8-OSS);

  • Вычисление действительных значений

Код и подключение.

Датчик достаточно популярный. Чаще всего он идет уже с обвязкой в виде готового модуля. Вы без труда найдете много разных, готовых библиотек. Я остановился на BMP180_Breakout_Arduino_Library. Скачать можно с GitHub или с нашего сайта.

Читайте также:  Эфирные масла поднимающие давление

Подключение описано в библиотеке, но я его продублирую на всякий случай:

SCL(clock)

  • Uno,Nano,Pro к А5
  • Mega,Due к 21
  • Leonardo к 3

SDA(Data)

  • Uno,Nano,Pro к А4
  • Mega,Due к 20
  • Leonardo к 2

VIN — к +5 вольта.

IO — Этот вывод есть на некоторых платах, питание в обход стабилизатора. НЕ больше 3.3 вольта .

GND — подключаем к минус.

Ну вот примерочный код с пояснениями :

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Ардуино: датчик давления BMP180 (BMP085)

Барометр — это устройство, которое измеряет атмосферное давление. То есть давление воздуха, который давит на нас со всех сторон. Еще со школы мы знаем, что первый барометр представлял собой тарелку с ртутью, и перевернутой пробиркой в ней. Автором этого устройства был Эванджели́ста Торриче́лли — итальянский физик и математик. Снять показания ртутного барометра можно так же просто, как и показания спиртового термометра: чем давление снаружи колбы больше, тем выше столбик ртути внутри неё. Пары ртути, как известно, весьма ядовиты.

Позже, появился более безопасный прибор — барометр-анероид. В этом барометре ртуть была заменена на гофрированную коробку из тонкой жести, в которой создано разрежение. Под воздействием атмосферы, коробочка сжимается и через систему рычагов поворачивает стрелку на циферблате. Вот так выглядят эти два барометра. Слева — анероид, справа — барометр Торричелли.

Зачем нам может понадобиться барометр? Чаще всего, этот прибор используют на летательных аппаратах для определения высоты полета. Чем выше аппарат поднимается над уровнем моря, тем меньшее давление испытывает бортовой барометр. Зная эту зависимость, легко определить высоту.

Другой распространенный вариант использования — самодельная погодная станция. В этом случае мы можем использовать известные зависимости грядущей погоды от атмосферного давления. Помимо барометра, на такие станции ставят датчики влажности и температуры.

Электронный барометр

Такие громоздкие барометры мы не сможем использовать в робототехнике. Нам нужен миниатюрный и энергоэффективный прибор, который легко подключается к той же Ардуино Уно. Большинство современных барометров делают по технологии МЭМС, так же как и гиротахометры с акселерометрами. МЭМС барометры основаны на пьезорезистивном, либо на тензометрическом методе, в которых используется эффект изменения сопротивления материала под действием деформирующих сил.

Если открыть корпус МЭМС барометра, можно увидеть чувствительный элемент (справа), который находится прямо под отверстием в защитном корпусе прибора, и плату управления (слева), которая осуществляет первичную фильтрацию и преобразование измерений.

Читайте также:  Переходник датчика давления масла газ

Датчики BMP085 и BMP180

К самым доступным датчикам давления, которые часто используются полетных контроллерах и в разного рода самодельных электронных устройствах, можно отнести датчики компании BOSH: BMP085 и BMP180. Второй барометр более новый, но полностью совместимый со старой версией.

Немного важных характеристик BMP180:

  • диапазон измеряемых значений: от 300 гПа до 1100 гПа (от -500м от +9000м над уровнем моря);
  • напряжение питания: от 3.3 до 5 Вольт;
    сила тока: 5 мкА при скорости опроса — 1 Герц;
  • уровень шума: 0.06 гПа (0.5м) в грубом режиме (ultra low power mode) и 0.02 гПа (0.17м) а режиме максимального разрешения (advanced resolution mode).

Теперь подключим этот датчик к контроллеру, и попробуем оценить атмосферное давление.

Подключение BMP180

Оба датчика имеют I2C интерфейс, так что их без проблем можно подключить к любой платформе из семейства Ардуино. Вот как выглядит таблица подключения к Ардуино Уно.

BMP 180 GND VCC SDA SCL
Ардуино Уно GND +5V A4 A5

Принципиальная схема

Внешний вид макета

Программа

Для работы с датчиком нам понадобится библиотека: BMP180_Breakout_Arduino_Library

Скачиваем её из репозитория, и устанавливаем в Arduino IDE. Теперь все готово для написания первой программы. Попробуем получить сырые данные из датчика, и вывести их в монитор COM порта.

Процедура получения заветного давления из датчика не такая тривиальная, и состоит из нескольких этапов. В упрощенном виде алгоритм выглядит так:

  1. запрашиваем у барометра показания встроенного датчика температуры;
  2. ждем время A, пока датчик оценивает температуру;
  3. получаем температуру;
  4. запрашиваем у барометра давление;
  5. ждем время B, пока датчик оценивает давление;
  6. получаем значение давления;
  7. возвращаем значение давления из функции.

Время B зависит от точности измерений, которая задается в функции startPressure. Единственный аргумент этой функции может принимать значения от 0 до 3, где 0 — самая грубая и самая быстрая оценка, 3 — самая точная оценка давления.

Загружаем программу на Ардуино Уно, и наблюдаем поток измерений атмосферного давления. Попробуем поднять датчик над головой, и опустить до уровня пола. Показания будут немного меняться. Осталось только разобраться, как нам преобразовать эти непонятные числа в высоту над уровнем моря.

Читайте также:  Давление песка на стенки резервуара

Преобразование давления в высоту над уровнем моря

Датчик BMP180 возвращает величину давления в гектопаскалях (гПа). Именно в этих единицах принято измерять атмосферное давление. 1 гПа = 100 Паскалей. Известно, что на уровне моря давление в среднем составляет 1013 гПа, и каждый дополнительный метр над уровнем моря будет уменьшать это давление всего на 0.11 гПа (примерно).

Таким образом, если мы вычтем из результата функции getPressure число 1013, и разделим оставшуюся разность на 0.11, то мы получим значение высоты над уровнем моря в метрах. Вот так изменится наша программа:

В действительности, давление зависит от высоты над уровнем моря нелинейно, и наша формула годится лишь для высот на которых мы с вами обычно живем. Благо, человечеству известная более точная зависимость давления от высоты, которую мы можем применить для получения более точных результатов.

Здесь p — измеренное в данной точке давление, p0 — давление относительно которого идет отсчет высоты.

В библиотеке SFE_BMP180 уже есть функция, которая использует указанную. формулу для получения точной высоты. Используем её в нашей программе.

Я не стал полностью копировать функцию getPressure, чтобы сохранить читабельность текста.

В программе появилась еще одна переменная P0 — это давление, которое мы измерим на старте программы. В случае летательного аппарата, P0 будет давлением на взлетной площадке, относительно которой мы начнем набор высоты.

Визуализация

Теперь попробуем отобразить показания давления в программе SFMonitor, и посмотрим как меняется давление при движении датчика на высоту 2 метра.

В результате работы программы получим график давления в Паскалях:

Заключение

Как мы уяснили из урока, определение высоты над уровнем моря не такая тривиальная задача. Мало того, что давление зависит от высоты нелинейно, так еще картину портят различные внешние факторы. Например, давление у нас дома постоянно меняется с течением времени. Даже за несколько минут, высота измеренная нашим прибором может варьироваться в диапазоне 0.5 — 1 метра. Температура так же сильно влияет на качество измерений, поэтому нам приходится учитывать её при расчете давления.

Для летательных аппаратов рекомендуется использовать датчики повышенной точности, такие как MS5611. У этого барометра точность измерений может достигать 0,012 гПа, что в 5 раз лучше, чем у BMP180. Также, для уточнения барометрической высоты полета применяют координаты GPS.

Источник

Adblock
detector