Меню

Как расчитать давление воздух

Формула давления воздуха, пара, жидкости или твердого тела. Как находить давление (формула)?

Давление – это физическая величина, которая играет особую роль в природе и жизни человека. Это незаметное глазу явление не только влияет на состояние окружающей среды, но и очень хорошо ощущается всеми. Давайте разберемся, что это такое, какие виды его существуют и как находить давление (формула) в разных средах.

Что называется давлением в физике и химии

Данным термином именуется важная термодинамическая величина, которая выражается в соотношении перпендикулярно оказываемой силы давления на площадь поверхности, на которую она воздействует. Это явление не зависит от размера системы, в которой действует, поэтому относится к интенсивным величинам.

В состоянии равновесия, по закону Паскаля, давление одинаково для всех точек системы.

В физике и химии оное обозначается с помощью буквы «Р», что является сокращением от латинского названия термина – pressūra.

Если речь идет об осмотическом давлении жидкости (равновесие между давлением внутри и снаружи клетки), используется буква «П».

Единицы давления

Согласно стандартам Международной системы СИ, рассматриваемое физическое явление измеряется в паскалях (кириллицей – Па, латиницей — Ра).

Исходя из формулы давления получается, что один Па равен одному Н (ньютон — единица измерения силы) разделенному на один квадратный метр (единица измерения площади).

Однако на практике применять паскали довольно сложно, поскольку эта единица очень мала. В связи с этим, помимо стандартов системы СИ, данная величина может измеряться по-другому.

Ниже приведены наиболее известные ее аналоги. Большинство из них широко используется на просторах бывшего СССР.

  • Бары. Один бар равен 105 Па.
  • Торры, или миллиметры ртутного столба. Приблизительно один торр соответствует 133, 3223684 Па.
  • Миллиметры водяного столба.
  • Метры водяного столба.
  • Технические атмосферы.
  • Физические атмосферы. Одна атм равна 101 325 Па и 1,033233 ат.
  • Килограмм-силы на квадратный сантиметр. Также выделяются тонна-сила и грамм-сила. Помимо этого, есть аналог фунт-сила на квадратный дюйм.

Общая формула давления (физика 7-го класса)

Из определения данной физической величины можно определить способ ее нахождения. Выглядит он таким образом, как на фото ниже.

В нем F – это сила, а S – площадь. Иными словами, формула нахождения давления – это его сила, разделенная на площадь поверхности, на которую оно воздействует.

Также она может быть записана так: Р = mg / S или Р = pVg / S. Таким образом, эта физическая величина оказывается связанной с другими термодинамическими переменными: объемом и массой.

Для давления действует следующий принцип: чем меньше пространство, на которое влияет сила – тем большее количество давящей силы на него приходится. Если, же площадь увеличивается (при той же силе) – искомая величина уменьшается.

Формула гидростатического давления

Разные агрегатные состояния веществ, предусматривают наличие у них отличных друг от друга свойств. Исходя из этого, способы определения Р в них тоже будут другими.

К примеру, формула давления воды (гидростатического) выглядит вот так: Р = pgh. Также она применима и к газам. При этом ее нельзя использовать для вычисления атмосферного давления, из-за разности высот и плотностей воздуха.

В данной формуле р – плотность, g – ускорение свободного падения, а h – высота. Исходя из этого, чем глубже погружается предмет или объект, тем выше оказываемое на него давление внутри жидкости (газа).

Рассматриваемый вариант является адаптацией классической примера Р = F / S.

Если вспомнить, что сила равна производной массы на скорость свободного падения (F= mg), а масса жидкости – это производная объема на плотность (m = pV), то формулу давление можно записать как P = pVg / S. При этом объем – это площад, умноженная на высоту (V = Sh).

Если вставить эти данные, получится, что площадь в числителе и знаменателе можно сократить и на выходе — вышеупомянутая формула: Р = pgh.

Рассматривая давление в жидкостях, стоит помнить, что, в отличие от твердых тел, в них часто возможно искривление поверхностного слоя. А это, в свою очередь, способствует образованию дополнительного давления.

Для подобных ситуаций применяется несколько другая формула давления: Р = Р + 2QH. В данном случае Р – давление не искривленного слоя, а Q – поверхность натяжения жидкости. Н – это средняя кривизна поверхности, которую определяют по Закону Лапласа: Н = ½ (1/R1+ 1/R2). Составляющие R1 и R2 – это радиусы главной кривизны.

Парциальное давление и его формула

Хотя способ Р = pgh применим как для жидкостей, так и для газов, давление в последних лучше вычислять несколько другим путем.

Дело в том, что в природе, как правило, не очень часто встречаются абсолютно чистые вещества, ведь в ней преобладают смеси. И это касается не только жидкостей, но и газов. А как известно, каждый из таких компонентов осуществляет разное давление, называемое парциальным.

Определить его довольно просто. Оно равно сумме давления каждого компонента рассматриваемой смеси (идеальный газ).

Из этого следует, что формула парциального давления выглядит таким образом: Р = Р1+ Р2+ Р3… и так далее, согласно количеству составляющих компонентов.

Нередки случаи, когда необходимо определить давление воздуха. Однако некоторые по ошибке проводят вычисления только с кислородом по схеме Р = pgh. Вот только воздух — это смесь из разных газов. В нем встречаются азот, аргон, кислород и другие вещества. Исходя из сложившейся ситуации, формула давления воздуха — это сумма давлений всех его составляющих. А значит, следует приметь вышеупомянутую Р = Р1+ Р2+ Р3

Наиболее распространенные приборы для измерения давления

Несмотря на то что высчитать рассматриваемую термодинамическую величину по вышеупомянутым формулам не сложно, проводить вычисление иногда попросту нет времени. Ведь нужно всегда учитывать многочисленные нюансы. Поэтому для удобства за несколько столетий был разработан ряд приборов, делающих это вместо людей.

Фактически почти все аппараты такого рода являются разновидностями манометра (помогает определять давление в газах и жидкостях). При этом они отличаются по конструкции, точности и сфере применения.

  • Атмосферное давление измеряется с помощью манометра, именуемого барометром. Если необходимо определить разряжение (то есть давление ниже атмосферного) — применяются другая его разновидность, вакуумметр.
  • Для того чтобы узнать артериальное давление у человека, в ход идет сфигмоманометр. Большинству он более известен под именем неинвазивного тонометра. Таких аппаратов существуют немало разновидностей: от ртутных механических до полностью автоматических цифровых. Их точность зависит от материалов, из которых они изготавливаются и места измерения.
  • Перепады давления в окружающей среде (по-английски — pressure drop) определяются с помощью дифференциальных манометров или дифнамометров (не путать с динамометрами).
Читайте также:  Почему пониженное кровяное давление

Виды давления

Рассматривая давление, формулу его нахождения и ее вариации для разных веществ, стоит узнать о разновидностях этой величины. Их пять.

Абсолютное

Так называется полное давление, под которым находится вещество или объект, без учета влияния других газообразных составляющих атмосферы.

Измеряется оно в паскалях и являет собою сумму избыточного и атмосферного давлений. Также он является разностью барометрического и вакуумметрического видов.

Вычисляется оно по формуле Р = Р2 + Р3 или Р = Р2 — Р4.

За начало отсчета для абсолютного давления в условиях планеты Земля, берется давление внутри емкости, из которой удален воздух (то есть классический вакуум).

Только такой вид давления используется в большинстве термодинамических формул.

Барометрическое

Этим термином именуется давление атмосферы (гравитации) на все предметы и объекты, находящие в ней, включая непосредственно поверхность Земли. Большинству оно также известно под именем атмосферного.

Его причисляют к термодинамическим параметрам, а его величина меняется относительно места и времени измерения, а также погодных условий и нахождения над/ниже уровня моря .

Величина барометрического давления равна модулю силы атмосферы на площади единицу по нормали к ней.

В стабильной атмосфере величина данного физического явления равна весу столпа воздуха на основание с площадью, равной единице.

Норма барометрического давления — 101 325 Па (760 мм рт. ст. при 0 градусов Цельсия). При этом чем выше объект оказывается от поверхности Земли, тем более низким становится давление на него воздуха. Через каждый 8 км оно снижается на 100 Па.

Благодаря этому свойству в горах вода в чайниках закивает намного быстрее, чем дома на плите. Дело в том, что давление влияет на температуру кипения: с его снижением последняя уменьшается. И наоборот. На этом свойстве построена работа таких кухонных приборов , как скороварка и автоклав. Повышение давления внутри их способствуют формированию в посудинах более высоких температур, нежели в обычных кастрюлях на плите.

Используется для вычисления атмосферного давления формула барометрической высоты. Выглядит она таким образом, как на фото ниже.

Р – это искомая величина на высоте, Р – плотность воздуха возле поверхности, g – свободного падения ускорение, h – высота над Землей, м – молярная масса газа, т – температура системы, r – универсальная газовая постоянная 8,3144598 Дж⁄(моль х К), а е – это число Эйклера, равное 2.71828.

Часто в представленной выше формуле давления атмосферного вместо R используется К – постоянная Больцмана. Через ее произведение на число Авогадро нередко выражается универсальная газовая постоянная. Она более удобна для расчетов, когда число частиц задано в молях.

При проведении вычислений всегда стоит брать во внимание возможность изменения температуры воздуха из-за смены метеорологической ситуации или при наборе высоты над уровнем моря, а также географическую широту.

Избыточное и вакуумметрическое

Разницу между атмосферным и измеренным давлением окружающей среды называют избыточным давлением. В зависимости от результата, меняется название величины.

Если она положительная, ее называют манометрическим давлением.

Если же полученный результат со знаком минус – его именуют вакуумметрическим. Стоит помнить, что он не может быть больше барометрического.

Дифференциальное

Данная величина является разницей давлений в различных точках измерения. Как правило, ее используют для определения падения давления на каком-либо оборудовании. Особенно это актуально в нефтедобывающей промышленности.

Разобравшись с тем, что за термодинамическая величина называется давлением и с помощью каких формул ее находят, можно сделать вывод, что это явление весьма важно, а потому знания о нем никогда не будут лишними.

Источник

Конвертер величин

Калькулятор зависимости температуры, давления и плотности воздуха от высоты в стандартной атмосфере

Калькулятор Международной стандартной атмосферы (МСА) и Стандартной атмосферы США 1976 г.

Этот калькулятор определяет атмосферное давление, плотность воздуха, температуру и скорость звука для заданных высоты и отклонения температуры от стандартного значения с использованием методики, принятой в Международной стандартной атмосфере (International Standard Atmosphere, МСА, англ. ISA) и Стандартной атмосфере США 1976 г. (1976 U.S. Standard Atmosphere, USSA). В диапазоне высот 0–86 км, на который рассчитан этот калькулятор, обе модели дают одинаковые результаты. Отклонение температуры, которое вводится в калькулятор — это отклонение от стандартной температуры атмосферы 15 °C. Например, если реальная температура воздуха над поверхностью земли равна 28 °C, то нужно ввести отклонение температуры 10 °C. Калькулятор позволяет выбрать различные величины радиуса Земли, используемые в расчетах.

Пример: рассчитать давление атмосферы, плотность воздуха, температуру и скорость звука на обычной крейсерской высоте полета 35 000 футов (10 600 м) при отклонении температуры от нормальной 10 °С.

Для расчета введите значения в соответствующие поля, выберите метрические или традиционные единицы измерения и нажмите кнопку Рассчитать.

Земная атмосфера находится в непрерывном движении. Поэтому были разработаны гипотетические модели, которые приблизительно показывают поведение атмосферы, если воздух не содержит пыли и влаги, а также нет ветра и возмущений. Эти модели известны под названием «стандартная атмосфера». Они необходимы для расчетов и проектирования воздушных судов, для изучения их характеристик, для сравнения результатов испытаний воздушных судов и для решения многих других задач в авиации и других отраслях науки и техники.

Концепция стандартной атмосферы была разработана для стандартизации и унификации калибровки высотомеров, для изучения характеристик авиационных двигателей, при разработке которых очень важно точно знать величины плотности и давления воздуха, температуры атмосферы на среднем уровне моря, а также их распределение по высоте. Международная стандартная атмосфера (ISA) является одной из таких моделей. Международная организация по стандартизации (ISO) опубликовала эту модель в качестве международного стандарта ISO 2533:1975. Организации по стандартизации разных стран публикуют собственные атмосферные модели, основанные на стандарте ISA. Широко известным стандартом атмосферы является Стандартная атмосфера США 1976 г., в которой используется модель атмосферы, основанная на стандарте ISA. Различие между этими двумя моделями имеются на высотах более 86 км, которые в данном калькуляторе не рассматриваются. В России используется ГОСТ 4401-81 «Атмосфера стандартная. Параметры», также основанный на стандарте ISA.

Читайте также:  Как выбрать контроллер давления воды

Международная стандартная атмосфера (ISA)

Международная стандартная атмосфера «предназначена для использования в расчетах летательных аппаратов, для приведения результатов испытаний летательных аппаратов и их компонентов к одинаковым условиям и для унификации разработки и калибровки приборов». Использование этой атмосферной модели также рекомендуется при обработке данных геофизических и метеорологических наблюдений. Модель атмосферы используется в качестве стандарта, с которым можно сравнить реальную атмосферу. Значения температуры, давления и плотности воздуха уменьшаются с ростом высоты. На уровне моря они имеют следующие значения:

  • Давление 101,325 кПа.
  • Температура +15 °C.
  • Плотность 1,225 кг/м³.

Стандартная атмосфера США

«Стандартная атмосфера США, 1976 г. является идеализированным представлением земной атмосферы в статическом состоянии от поверхности до высоты 1000 км». Модель основана на существующих международных стандартах и, в основном, использует методологию, принятую в Международной стандартной атмосфере (ISA). Уравнения модели были приняты Комитетом по расширению стандартной атмосферы США (United States Committee on Extension to the Standard Atmosphere, COESA), который представлял 29 научных, правительственных, военных и инженерных организаций США. В модели атмосфера разделяется на семь слоев до максимальной высоты 86 км. Главным отличием Стандартной атмосферы США от Международной стандартной атмосферы является предложенное распределение температур на больших высотах, которое данный в данном калькуляторе не рассматривается.

Определения, константны и формулы, используемые в расчетах

Высота и эшелон полета

Несмотря на то, что эшелон и высота полета измеряются в одних и тех же единицах длины (метрах, километрах, футах и милях), они являются разными физическими величинами:

  • Высота полета — вертикальное расстояние объекта от среднего уровня моря, измеренное с помощью прибора для измерения длины или расстояния, например, лазерного дальномера или радиовысотомера.
  • Эшелон — условная вертикальная стандартная высота, рассчитанная по давлению, обозначаемая в сотнях футов с добавлением букв FL (англ. Flight Level — эшелон). Например, эшелон 34 000 футов обозначается как FL340. Эшелон измеряется с помощью прибора для измерения давления (например, барометрического высотомера, который фактически является точным барометром, откалиброванным в единицах высоты). При подготовке к взлету высотомер устанавливается на нулевую высоту. Когда самолет поднялся достаточно высоко (на высоту перехода), летчик устанавливает на высотомере стандартное давление 29,921 дюйма ртутного столба или 1013,25 гектопаскалей. При подготовке к посадке самолета, летчик должен на небольшой высоте (в разных юрисдикциях она может быть от 3000 до 18000 футов над уровнем моря установить на высотомере давление в аэропорту назначения, чтобы высотомер показывал при приземлении реальную высоту над уровнем моря.

Селектор радиуса Земли R

В селекторе используется четыре константы радиуса Земли:

Средний радиус Земли, определенный Всемирной геодезической системой координат WGS-84: R₁ = 6371,0088 км.

Средний радиус Земли, определенный в Стандартной атмосфере США: R₀ = 6356,766 км.

Экваториальный радиус Земли (большая полуось), определенный Всемирной геодезической системой координат WGS-84: a = 6378,1370 км.

Полярный радиус Земли (малая полуось), определенный Всемирной геодезической системой координат WGS-84: b = 6356,7523142 км.

Удельная газовая постоянная для сухого воздуха Rsp

Удельная газовая постоянная для сухого воздуха Rsp определяется как универсальная газовая постоянная, отнесенная к молярной массе сухого воздуха. В Стандартной атмосфере США 1976 г. и в ГОСТ 4401-81 «Стандартная атмосфера. Параметры» универсальная газовая постоянная определена как R* = 8314,32 Н м кмоль⁻¹ K⁻¹. Следовательно, удельная газовая постоянная для сухого воздуха в Дж K⁻¹ кг⁻¹ рассчитывается как

Стаднартное ускорение свободного падения

Стандартное ускорение свободного падения определяется международным стандартом ISO 80000-3 «Величины и единицы. Часть 3. Пространство и время»: g₀ = 9,80665 м/с² или 32,17405 фут/с². Несмотря на то, что ускорение свободного падения в разных местах Земли различное, для измерений всегда используется указанная выше стандартная величина.

Геопотенциальная высота

Сила тяготения зависит от высоты и широты места. Переход от геометрической высоты к геопотенциальной устраняет переменную — ускорение свободного падения. Геопотенциальная высота — это вертикальная координата относительно среднего уровня моря, вычисленная из геометрической высоты (измеренной с помощью прибора для измерения длины) с учетом изменения ускорения свободного падения в зависимости от высоты и широты. Иными словами, геопотенциальная высота — это высота, учитывающая силу тяжести. При этом изменение силы тяжести от широты места малó и не учитывается. Геопотенциальная высота является мерой удельной потенциальной энергии на данной геометрической высоте относительно поверхности Земли. Она используется в метеорологии и авиации. Соотношение между геометрической H и геопотенциальной высотой Z определяется следующей формулой (формула 18 в 1976 USSA), которая используется в этом калькуляторе

Например, для максимальной геометрической высоты, которую позволяет рассчитать этот калькулятор (Z = 86 км), соответствующая геопотенциальная высота будет H = 84,852 км. В калькуляторе геопотенциальная высота рассчитывается до определения температуры и давления.

Скорость звука

Скорость звука в воздухе около 343 м/с, или 1,235 км/час, или 767 миль в час. Это означает, что звук может проходить в воздухе один километр за 3 секунды или милю за 5 секунд. Скорость звука в воздухе зависит главным образом от его температуры; зависимость от частоты звуковых колебаний и давления воздуха пренебрежимо мала.

Если предположить, что воздух сухой и что он является идеальным газом при относительно низком давлении и плотности, что имеет место в стандартных условиях на уровне моря, а также предположить, что температура ниже или равна комнатной, то скорость звука определяется по следующей формуле, которая используется в этом калькуляторе:

Здесь γ — рассматриваемый ниже показатель адиабаты, R = 287,052 Дж·кг⁻¹·K⁻¹ — удельная газовая постоянная и T — абсолютная температура воздуха в кельвинах.

Показатель адиабаты газа, называемый также коэффициентом Пуассона и фактором изоэнтропийного расширения, обозначается греческой буквой γ (гамма) и является отношением теплоемкости при постоянном давлении Cp к теплоемкости при постоянном объеме Cv

Читайте также:  Наименьшее давление в идеальном газе

Для сухого воздуха при °C, γ=1,40.

Зависимость силы тяжести от высоты

Зависимость гравитационного ускорения Gh от высоты h приблизительно определяется следующей формулой, которая используется в этом калькуляторе:

g — стандартное ускорение свободного падения. Например, ускорение свободного падения на максимальной для этого калькулятора геометрической высоте 86 км равно Gh = 0,9874·g, то есть разница очень мала.

Зависимость температуры от высоты

В тропосфере температура воздуха уменьшается с увеличением высоты. В Международной стандартной атмосфере, Стандартной атмосфере США 1976 г. и ГОСТ 4401-81 скорость уменьшения температуры (вертикальный температурный градиент) равна 6,5 К/км от уровня моря до 11 км или 36089 футов. В тропопаузе (слое атмосферы от 11 до 20 км или 65617 футов) температура постоянная и равна to –56.5 °C (–69.7 °F или 216.7 K). В ионосфере, от 20 до 32 км или 104987 футов скорость уменьшения температуры (вертикальный градиент) равна 1,0 K/км. Температурные градиенты приведены ниже в таблице до высоты 86 км (геопотенциальной высоты 84,85 км). Таблица приводится по документу USSA 1796.

Слой атмосферы Диапазон геопотенциальных высот (км) Номер диапазона, b Базовая геопотенциальная высота над средним уровнем моря, Hb (км) Базовое статическое давление, Pb (Па) Базовая температура, Tb (K) Базовый вертикальный температурный градиент на километр геопотенциальной высоты Lb (K/км)
Тропосфера 0–11 101325 288.15 –6.5
Тропопауза (стратосфера I) 11–20 1 11 22632.06 216.65 0.0
Стратосфера II 20–32 2 20 5474.889 216.65 +1.0
Стратосфера III 32–47 3 32 868.0187 228.65 +2.8
Стратопауза (мезосфера I) 47–51 4 47 110.9063 270.65
Мезосфера II 51–71 5 51 66.93887 270.65 –2.8
Мезосфера III 71–84.9 6 71 3.956420 214.65 –2.0
7 84.852 0.3734 186.87

«Базовый» в этой таблице означает величину на нижней границе диапазона высот. Отрицательный градиент означает уменьшение температуры с высотой, а положительный — ее увеличение. Большее значение градиента означает, что при увеличении высоты воздух охлаждается (нагревается) сильнее.

Для определения зависимости температуры от высоты:

  • определите геопотенциальную высоту по геометрической высоте;
  • определите номер интервала, b;
  • определите температуру TM на геопотенциальной высоте H от поверхности до 84,85 км с помощью семи последовательных линейных уравнений в различных интервалах высоты. Для этого вставьте в формулу ниже значения из таблицы 1

Hb — базовая геопотенциальная высота (Табл. 1),

Lb базовый вертикальный температурный градиент

Температура TM называется молекулярной температурой, определяемой как

Здесь T — кинетическая температура, то есть температура воздуха, которую обычно измеряют термометром. Она является функцией скорости движения молекул газа в земной атмосфере. M — молекулярная масса воздуха на уровне моря и MH — молекулярная масса воздуха на высоте H. На высотах до 100 км молекулярная масса воздуха остается постоянной, поэтому молекулярная температура равна кинетической температуре.

Отклонение температуры от стандартного значения. Конечно, реальная атмосфера никогда не соответствует стандартной. Изменения температуры влияют на плотность воздуха и, следовательно, на его давление и вес. В холодном воздухе давление уменьшается с высотой быстрее, чем в горячем. В жаркий день вся атмосфера и график зависимости температуры от высоты будут смещены (см. график ниже), так как отклонение температуры будет прибавлено к кривой температуры и летчики, которые используют барометрические приборы для измерения высоты полета должны помнить, что в жаркий день геометрическая высота их самолета будет больше, чем показанная на высотомере. И, наоборот, в холодный день реальная высота будет меньше, чем показанная на высотомере.

Если самолет входит в зону, где температура значительно ниже, чем стандартная по ISA (+15 °C на уровне моря), высотомер покажет завышенную высоту, что опасно. Чтобы учесть отклонение от стандартной атмосферы, в калькуляторе имеется поле Отклонение температуры от стандартного значения, которое можно использовать, например, для анализа или прогноза летно-технических характеристик воздушного судна в жаркий день. Следует помнить, что отклонение температуры — это температурный интервал и при преобразовании градусов Цельсия или кельвинов в градусы Фаренгейта или Ранкина нужно использовать только масштабирующий коэффициент 1 К = 1 °C = 9/5 °F = 1.8 °F = 1.8 °R. Для преобразования можно также воспользоваться нашим калькулятором температурных интервалов.

Зависимость давления от высоты

В ISA, USSA и ГОСТ 4401-81 для моделирования зависимости давления и плотности воздуха от высоты используется барометрическая формула и данные таблицы 1. Для определения зависимости давления от высоты в различных слоях атмосферы используются два выражения.

Если базовый вертикальный градиент температуры Lb нулевой, то используется формула

Если же базовый вертикальный градиент температуры Lb отличен от нуля, то используется формула

В этих уравнениях все величины с индексом b берутся из таблицы 1:

Pb — базовое статическое давление в слое b в паскалях

Tb — базовая температура в слове b в кельвинах

Lb — базовый вертикальный градиент температуры в слое b в К/м

Hb — базовая геопотенциальная высота слоя b в метрах

H — геопотенциальная высота над уровнем моря в метрах

R* = 8,31432·10³ Н м кмоль⁻¹ K⁻¹ — универсальная газовая постоянная

g = 9,80665 м/с² — гравитационное ускорение

M = 0.0289644 кг/моль — молярная масса земной атмосферы

TM — молекулярная температура на высоте H, определенная выше:

Плотность воздуха

Плотность воздуха — это масса воздуха на единицу объема. Она обозначает греческой буквой ρ и измеряется в in кг/м³ в СИ или фунт/фут³ в традиционных единицах. В ISA и USSA плотность воздуха при стандартном давлении 1013,25 гПа и температуре 15 °С равна 1,225 кг/м³ или 0,0765 фунт/фут³. На плотность воздуха влияет не только температура и давление, но также и количество воды в воздухе. Чем больше водяного пара содержится в воздухе тем ниже его плотность.

В этом калькуляторе мы рассматриваем только сухой воздух. Плотность сухого воздуха ρ рассчитывается с использованием идеального газа с учетом давления, определенного для данной высоты по следующей формуле:

p — абсолютное давление в паскалях (Па),

T — абсолютная температура воздуха в кельвинах (K) и

R = 287,052 Дж·кг⁻¹·K⁻¹ — удельная газовая постоянная.

Отметим, что поскольку мы рассматриваем воздух как идеальный газ, не содержащий влаги, результат наших расчетов является теоретическим приближением. Наиболее точные результаты получается при низких температурах и давлениях (то есть на больших высотах).

Источник

Adblock
detector