Меню

Основной закон давления паскаля

Основы гидравлики

Гидростатика и ее законы

Гидростатика – раздел гидравлики, в котором изучаются законы равновесия жидкостей, находящихся в покое.

Понятие покоя или равновесного состояния по отношению к жидкости можно отождествлять с аналогичным понятием в одном из разделов технической механики — статике. Любое тело, материальная точка или обособленный объем вещества (в т. ч. жидкости) считается покоящимся, если все силы (внешние и реактивные), действующие на этот материально существующий субъект (т. е. имеющий массу), уравновешивают друг друга.

Тем не менее, жидкость по своим свойствам и «способностям» уникальна, поэтому гидростатика призвана пояснить некоторые особенности поведения жидкого вещества в тех или иных условиях.

Гидростатическое давление

На жидкость, находящуюся в покое действуют массовые и поверхностные силы. Массовыми являются силы, действующие на все частицы рассматриваемого объема жидкости. Это силы тяжести и силы инерции (силы инерции проявляются в движущейся жидкости, поэтому их учитывает раздел гидродинамика) .
Массовые силы пропорциональны массе жидкости, а для однородной жидкости, плотность которой одинакова во всех точках, — объему. Поэтому массовые силы называют еще объемными.

К поверхностным относятся силы, действующие на поверхности жидкости. Это, например, атмосферное давление, действующее на жидкость в открытом сосуде, или силы трения, возникающие в движущейся жидкости между отдельными слоями и стенками сосуда (в покоящейся жидкости силы трения отсутствуют) .

Жидкость, находящаяся в состоянии покоя, может находиться только под действием силы тяжести и поверхностных сил, вызванных внешним давлением (например, атмосферным) . Внешние силы давления являются нормальными сжимающими поверхностными силами (считается, что жидкость не сопротивляется растяжению) . Все эти силы создают в неподвижной жидкости некоторую равнодействующую (результирующую) силу, которая называется гидростатической силой .

Покоящаяся жидкость под воздействием гидростатической силы находится в напряженном состоянии, характеризуемом гидростатическим давлением.

Выделим в покоящейся жидкости произвольный объем (см. рис. 1) . Мысленно разделим этот объем произвольной плоскостью П . Выделим на полученном сечении точку А и некоторую площадку ΔS вокруг этой точки.
Через поверхность П давление передается со стороны отсеченной части I на часть II . Сила ΔP , действующая на рассматриваемую площадку ΔS и есть гидростатическая сила.

Отношение гидростатической силы к площади поверхности (выделенного сечения) жидкости называют средним гидростатическим давлением. Истинное гидростатическое давление в данной точке жидкости может быть определено, как предел, к которому стремится среднее гидростатическое давление при бесконечном уменьшении рассматриваемой площадки ΔS :

p = lim ΔP/ΔS при ΔS стремящемся к нулю.

Гидростатическое давление всегда направлено по внутренней нормали к площадке, на которую оно действует, и величина его в произвольной точке не зависит от ориентации этой площадки в пространстве.

Это утверждение вытекает из условий:
— неподвижности жидкости, поскольку при любом перемещении жидкости неизбежно возникают касательные напряжения;
— равновесия рассматриваемого элементарного (бесконечно малого) объема, поскольку равновесие может быть достигнуто лишь при равенстве всех действующих на рассматриваемый элементарный объем внешних сил (предполагается, что весом бесконечно малого объема жидкости можно пренебречь) .
При этом выделенный объем может иметь любую произвольную форму – куба, правильной пирамиды и т. д. – в любом случае легко доказать, что силы, действующие на грани этого объема будут одинаковы во всех направлениях.

Основное уравнение гидростатики. Закон Паскаля.

Выделим в однородной жидкости, находящейся в покое, элементарный объем ΔV в виде прямоугольного параллелепипеда с площадью горизонтального основания ΔS и высотой H (см. рис. 2) .
Рассмотри условия равновесия выделенного элементарного объема.

Пусть давление на плоскость верхнего основания равно р1 , а на плоскость нижнего основания – р .
Силы давления действующие на вертикальные грани выделенного параллелепипеда взаимно уравновешиваются как равные по величине и противоположно направленные.
На горизонтальные грани действуют силы давления, направленные вертикально: на верхнюю грань эта сила будет равна р1ΔS (направлена вниз) , на нижнюю – pΔS (направлена вверх) .

На верхнюю и нижнюю грани рассматриваемого параллелепипеда действуют силы, обусловленные давлением на жидкость со стороны внешней среды (например, атмосферного давления) и вес (сила тяжести) элементарного столбика жидкости над каждой из горизонтальных граней параллелепипеда.
Очевидно, что разность сил тяжести, действующих на верхнюю и нижнюю площадку, будет равна весу жидкости, заключенной в объеме рассматриваемого параллелепипеда, который равен ρgΔV ,
где ρ – плотность жидкости, g – ускорение свободного падения, ΔV – объем параллелепипеда: ΔV = HΔS .

Исходя из условия равновесия выделенного элементарного параллелепипеда объемом ΔV , можно утверждать, что сумма всех внешних сил, действующих на параллелепипед равна нулю, т. е.:

pΔS – p1ΔS – ρgΔV = pΔS – p1ΔS – ρgΔSH = 0 .

Преобразовав эту формулу, получим величину гидростатического давления на нижнюю горизонтальную площадку:

Если верхняя грань параллелепипеда граничит с внешней средой (например, атмосферой) , оказывающей давление р на жидкость, то формула может быть переписана в виде:

Это выражение является основным уравнением гидростатики .

Итак, гидростатическое давление в любой точке внутри покоящейся жидкости равно сумме давления на свободную поверхность со стороны внешней среды и давления столба жидкости высотой, равной глубине погружения точки (т. е. ее расстоянию от свободной поверхности жидкости) .

На основании основного уравнения гидростатики может быть сформулирован закон Паскаля: внешнее давление, производимое на свободную поверхность покоящейся жидкости, передается одинаково всем ее точкам по всем направлениям.

Блез Паскаль (Blaise Pascal, 1623 — 1662) — выдающийся французский ученый — математик, механик, физик, литератор и философ. Классик французской литературы, один из основателей математического анализа, теории вероятностей и проективной геометрии, создатель первых образцов счётной техники, автор основного закона гидростатики.

Любопытны цитаты из популярного сборника высказываний Паскаля, не потерявшие актуальность и в наши дни.
Вот некоторые из них:

  • Искание истины совершается не с весельем, а с волнением и беспокойством; но все таки надо искать ее потому, что, не найдя истины и не полюбив ее, ты погибнешь.
  • Прошлое и настоящее — наши средства, только будущее — наша цель.
  • Нас утешает любой пустяк, потому что любой пустяк приводит нас в уныние.
  • Когда человек пытается довести свои добродетели до крайних пределов, его начинают обступать пороки.
  • Справедливость должна быть сильной, а сила должна быть справедливой.
  • Истина так нежна, что чуть только отступил от нее, впадаешь в заблуждение, но и заблуждение это так тонко, что стоит только немного отклониться от него, и оказываешься в истине.
  • Величие не в том, чтобы впадать в крайность, но в том, чтобы касаться одновременно двух крайностей и заполнять промежуток между ними.
  • Изучая истину, можно иметь троякую цель: открыть истину, когда ищем ее; доказать ее, когда нашли; наконец, отличить от лжи, когда ее рассматриваем.
  • Сила добродетели человека должна измеряться не его усилиями, а его повседневной жизнью.
  • Лишь в конце работы мы обычно узнаём, с чего нужно было её начать.
  • Существует достаточно света для тех, кто хочет видеть, и достаточно мрака для тех, кто не хочет.
  • Человек — это приговорённый к смерти, казнь которого откладывается на время его жизни.
Читайте также:  Высокое давление и трусило

Умер Паскаль после тяжелой и продолжительной болезни в возрасте 39 лет, оставив после себя яркий след в науке.
Имя этого ученого увековечено в названиях одной из единиц международной системы СИ, языка программирования Paskal и лунного кратера.

Пример решения задачи с использованием закона Паскаля

Водолазы при подъеме затонувшего судна работали на глубине 50 м. Определить давление p воды на этой глубине и силу P давления на скафандр водолаза, если площадь его поверхности S равна 1 м 2 .
Атмосферное давление считать равным 1013 МПа (0,1013×106 Па), плотность воды – 1000 кг/м 3 .

Решение:

Определим давление, оказываемое столбом воды на глубине 50 м (в Па) :

ρgH = 1000×9,81×50 = 4,9×105 Па.

Применив основное уравнение гидростатики, с учетом атмосферного давления, найдем давление на глубине 50 м:

p = p + ρgH = 1,013×105 + 4,9×105 = 5,91×105 Па ≈ 0,59 МПа.

Силу давления столба воды на скафандр водолаза определим по формуле:

P = pS = 5,91×105×1 = 591000 Н = 591 кН.

Основное уравнение гидростатики и закон Паскаля широко применяются при решении многих инженерных задач. Свойства жидкости передавать производимое на нее давление без изменения используется при конструировании гидравлических прессов, домкратов, гидроаккумуляторов, гидроприводов и других механизмов. Основной принцип работы этих устройств основа на пропорциональной разности сил, приложенных к поршням гидроцилиндров, имеющих разный диаметр: P1S2 = P2S1 .

Источник

Давление. Атмосферное давление. Закон Паскаля. Закон Архимеда

1. Твёрдые тела оказывают давление на опору. На тело, стоящее на опоре, действуют сила тяжести ​ \( \vec_т=m\vec \) ​ и сила реакции опоры ​ \( \vec \) ​ (рис. 55).

Если опора неподвижна, то это тело действует на неё с силой ​ \( \vec \) ​, называемой силой давления и равной в этом случае по модулю силе тяжести: ​ \( F=mg \) ​.

Физическая величина, равная отношению силы давления ​ \( F \) ​ к площади поверхности ​ \( S \) ​ называется давлением и обозначается буквой ​ \( p \) ​:

Единицей давления является 1 паскаль (1 Па):

Более крупная единица давления — килопаскаль.

Как видно из формулы, давление на поверхность зависит от площади поверхности. Так, человек проваливается в снег при ходьбе по нему и спокойно перемещается на лыжах. В том случае, когда нужно увеличить давление на твёрдое тело, используют заострённые предметы, например, булавки, гвозди, ножи и т.п.

2. Жидкости и газы тоже оказывают давление на сосуд, в котором они находятся. Так, молекулы газа, находящегося в воздушном шаре, непрерывно движутся и при этом соударяются со стенками шара. Эти удары и вызывают давление газа на стенки шара и любого другого сосуда, в котором газ находится. Удар одной молекулы слаб, но внутри шара находится огромное число молекул, поэтому
их суммарное давление на стенки шара ощутимо.

Чем выше температура газа, чем с большей скоростью движутся молекулы и чем чаще и сильнее ударяются они о стенки сосуда, тем, следовательно, давление газа на стенки сосуда больше.

Если уменьшить объём газа в сосуде, не меняя его массу, то число молекул в единице объёма увеличится, увеличится и плотность газа. Число ударов молекул о стенки сосуда при этом возрастёт, следовательно, увеличится давление газа. При увеличении объёма газа при той же массе уменьшится его плотность и число ударов молекул о стенки сосуда. Давление уменьшится.

Таким образом, давление газа тем больше, чем выше его температура и меньше объём при неизменной массе. При повышении температуры и уменьшении объёма молекулы с большей силой и чаще ударяются о стенки сосуда.

3. Опыт показывает, что давление, производимое на жидкость или газ, передаётся по всем направлениям. Если шар с отверстиями, соединённый с трубкой, внутри которой находится поршень, наполнить водой, а затем нажать на поршень, то можно заметить, что вода брызнет из всех отверстий. При этом струйки вытекающей воды будут примерно одинаковыми. Это говорит о том, что давление, которое мы создаём, действуя на воду, передаётся водой по всем направлениям одинаково. Тот же эффект можно наблюдать, если шар заполнить дымом. Дым тоже будет передавать производимое на него давление по всем направлениям одинаково.

То, что газы и жидкости передают давление по всем направлениям, объясняется подвижностью их молекул. Она проявляется в том, что слои и частицы жидкостей и газов могут свободно перемещаться друг относительно друга но разным направлениям. Благодаря подвижности молекул давление, которое оказывает поршень на ближайший к нему слой, передаётся последующим слоям. Молекулы газа и жидкости движутся хаотически, поэтому и их действие распределяется равномерно по всему объёму шара. Таким образом, давление, производимое на жидкость или газ, передаётся по всем направлениям без изменения в каждую точку жидкости или газа. Это утверждение называется законом Паскаля.

4. Закон Паскаля находит применение в гидравлических машинах.

Основной частью любой гидравлической машины являются два соединенных между собой цилиндра разного диаметра. Цилиндры заполнены жидкостью, чаще всего маслом, и в них помещены поршни.

Пусть на большой поршень площадью ​ \( S_1 \) ​ действует сила ​ \( F_1 \) ​ (рис. 56). Эта сила будет оказывать на поршень давление ​ \( p_1 \) ​: ​ \( p_1=F_1/S_1 \) ​.

Это давление \( p_1 \) будет передаваться жидкости, находящейся под большим поршнем. Согласно закону Паскаля, давление, производимое на жидкость или газ, передаётся по всем направлениям без изменения. Следовательно, давление будет передаваться жидкости, находящейся под меньшим поршнем, и на меньший поршень со стороны жидкости будет действовать давление ​ \( p_2=p_1 \) ​. Соответственно, на меньший поршень со стороны жидкости будет действовать сила ​ \( F_2=p_2S_2 \) ​, направленная вверх. Откуда ​ \( p_2=F_2/S_2 \) ​.

Чтобы жидкость и поршни находились в равновесии, на меньший поршень следует подействовать силой, равной по модулю силе ​ \( F_2 \) ​, направленной вертикально вниз. Для этого можно, например, положить на поршень груз.

Так как ​ \( p_1=p_2 \) ​, то ​ \( F_1/S_1=F_2/S_2 \) ​ или ​ \( F_1/F_2=S_1/S_2 \) ​.

Таким образом, гидравлическая машина даёт выигрыш в силе во столько раз, во сколько раз площадь большего поршня больше площади меньшего поршня.

Это означает, что с помощью некоторой силы, приложенной к малому поршню гидравлической машины, можно уравновесить существенно большую силу, приложенную к большему поршню.

Гидравлическая машина, так же как и любой простой механизм, даёт выигрыш в силе, но не даёт выигрыша в работе.

5. Твёрдые тела производят давление на опору вследствие действия на них силы тяжести. Поскольку на жидкости тоже действует сила тяжести, то и жидкости оказывают давление на дно сосуда. Это можно доказать экспериментально.

Если в трубку, дно которой затянуто плёнкой, налить воду, то плёнка заметно прогнётся. Это происходит потому, что на воду действует сила тяжести, и каждый слой воды давит на слои воды, лежащие ниже, и соответственно на дно сосуда.

Читайте также:  Тойота раф 4 давление в шинах

Давление производится жидкостью не только на дно сосуда, оно существует внутри жидкости на любой её глубине. При этом производимое давление передаётся по закону Паскаля по всем направлениям одинаково.

Если в трубку с дном, затянутым плёнкой, добавить воды, то плёнка прогнётся сильнее. Это происходит потому, что увеличивается вес воды и соответственно давление воды на дно трубки. Таким образом, давление жидкости на дно сосуда тем больше, чем больше высота столба жидкости.

Если теперь в трубку до той же высоты налить масло, плотность которого меньше плотности воды, то плёнка прогнётся меньше, чем в том случае, когда в ней была вода (рис. 57 а). Это означает, что давление на дно сосуда тем больше, чем больше плотность жидкости.

Сила ​ \( F \) ​, с которой жидкость давит на дно, равна её весу ​ \( P \) ​. Вес жидкости ​ \( P \) ​ равен произведению её массы ​ \( m \) ​ и ускорения свободного падения ​ \( g \) ​: ​ \( F=P=mg \) ​.

Масса жидкости ​ \( m \) ​ равна произведению её плотности ​ \( \rho \) ​ и объёма ​ \( V \) ​: ​ \( m=\rho V \) ​, где ​ \( V=Sh \) ​ (рис. 57 б). Тогда ​ \( F=mg=\rho V\!g=\rho Shg \) ​.

Разделив вес жидкости (силу, с которой она давит на дно сосуда) на площадь дна, получим давление жидкости ​ \( p \) ​: ​ \( p=F/S \) ​ или ​ \( p=\rho gSh/S \) ​, т.е. ​ \( p=\rho gh \) ​

Давление жидкости на дно и стенки сосуда равно произведению плотности жидкости, ускорения свободного падения и высоты столба жидкости.

6. Два или более сосудов, соединённых между собой у дна, называются сообщающимися сосудами. Примерами сообщающихся сосудов могут служить гидравлические машины и жидкостный манометр. Самым простым сообщающимся сосудом, которым вы пользуетесь каждый день, является чайник.

Если две стеклянные трубки соединить резиновой трубкой (рис. 57 в), то получатся сообщающиеся сосуды. Наливая в одну трубку воду, можно заметить, что она будет перетекать и в другую трубку. При этом уровни воды в трубках будут все время одинаковы.

Можно поднять одну из трубок или наклонить ее, в любом случае друг относительно друга уровни воды или любой другой жидкости останутся одинаковыми, т.е. будут лежать в одной и той же горизонтальной плоскости.

Можно сделать вывод: в сообщающихся сосудах поверхности однородной жидкости всегда устанавливаются на одном уровне.

Это верно при условии, что давление на поверхность жидкости одинаково. При использовании сообщающихся сосудов в качестве жидкостного манометра именно по разности уровней жидкости в трубках можно судить о значении давления.

Объяснить то, что в сообщающихся сосудах однородная жидкость устанавливается на одном уровне, можно следующим образом. Жидкость в сосудах не перемещается, следовательно, её давления в сосудах на одном уровне, в том числе и на дно, одинаковы. Она имеет одинаковую плотность, т.к. она однородная. Следовательно, в соответствии с формулой ​ \( p=\rho gh \) ​ высоты жидкости тоже одинаковы.

Если в одну трубку налить воду, а в другую масло, плотность которого меньше плотности воды, то уровень воды будет ниже, чем уровень масла в другой трубке (рис. 58).

Это объясняется тем, что давление жидкости на дно сосуда зависит от высоты столба жидкости и от её плотности. При одинаковом давлении, чем больше плотность жидкости, тем меньше высота её столба. Поскольку плотность масла меньше плотности воды, то столб масла выше столба воды. Жидкости, имеющие разную плотность, устанавливаются в сообщающихся сосудах на разных уровнях; во сколько раз плотность одной жидкости больше плотности другой, во столько раз меньше высота её столба.

7. Земля окружена воздушной оболочкой — атмосферой. Воздух, как и газы, входящие в состав атмосферы, имеет массу. Соответственно, на него действует сила тяжести, и он оказывает давление на поверхность Земли.

Давление воздушной оболочки на поверхность Земли и находящиеся на ней тела называется атмосферным давлением.

В существовании атмосферного давления легко убедиться на опытах. Если опустить в воду трубку с плотно прилегающим к её стенкам поршнем и поднимать поршень вверх, то вода будет подниматься по трубке вслед за поршнем.

Это происходит потому, что при подъёме поршня между ним и поверхностью воды образуется разреженное пространство. На поверхность воды в сосуде действует атмосферное давление, которое в соответствии с законом Паскаля передаётся по всем направлениям, в том числе и в направлении трубки. Оно и заставляет воду подниматься за поршнем.

Для расчёта атмосферного давления нельзя использовать формулу, по которой рассчитывается давление столба жидкости, так как для этого нужно знать высоту атмосферы и плотность воздуха. Но атмосфера не имеет определённой границы, а плотность воздуха изменяется с высотой. Однако атмосферное давление можно измерить.

Опыт по измерению атмосферного давления был предложен итальянским ученым Торричелли в XVII в. Стеклянную трубку длиной 1 м, запаянную с одного конца, заполнили ртутью. Закрыв другой конец трубки, её перевернули и опустили в сосуд с ртутью. Затем этот конец трубки открыли, и часть ртути вылилась из неё в сосуд, а часть осталась в трубке. Высота столба ртути, оставшейся в трубке, оказалась равной примерно 760 мм.

Объясняется это следующим образом: атмосферное давление действует на ртуть в сосуде, это давление передаётся по всем направлениям и действует на ртуть в основании трубки снизу вверх. Это давление уравновешивает давление столба ртути в трубке. Таким образом, атмосферное давление равно давлению, которое оказывает у основании трубки столб ртути высотой 760 мм. Это давление называют нормальным атмосферным давлением.

Если атмосферное давление выше нормального, то высота столба ртути больше, если — меньше нормального, то столб ртути опустится ниже.

Нормальное атмосферное давление равно 101 300 Па.

Атмосферное давление чаще выражают не в паскалях, а в миллиметрах ртутного столба (мм рт.ст.). 1 мм рт.ст. = 133,3 Па.

Если к трубке в опыте Торричелли прикрепить шкалу и проградуировать её в миллиметрах, то получим прибор — ртутный барометр, с помощью которого можно измерять атмосферное давление.

В быту и технике для измерения атмосферного давления применяют более удобный в обращении металлический барометр, называемый анероидом.

Атмосферное давление зависит от высоты. Это объясняется тем, что воздух хорошо сжимаем, так же как и все газы. Верхние слои воздуха давят на лежащие ниже и сжимают их, соответственно плотность слоёв воздуха, а следовательно и давление, у поверхности Земли больше, чем на некоторой высоте от неё.

Читайте также:  Где можно изменить давление

Так, в местности, лежащей на уровне моря, давление равно примерно 760 мм рт. ст., т.е. нормальному атмосферному. В горах оно выше. Измерения показывают, что на каждые 12 м подъёма атмосферное давление уменьшается примерно на 1 мм рт.ст.

8. Если подвешенный к пружине динамометра шарик опустить в сосуд с водой, то можно заметить, что показание динамометра уменьшится.

Точно так же можно изменить показания динамометра, если подействовать на шарик рукой снизу вверх. Следовательно, когда шарик опустили в воду, на него, помимо силы тяжести и силы упругости пружины динамометра, стала действовать сила, направленная вверх. Эту силу называют выталкивающей или архимедовой силой.

Выталкивающая сила возникает за счёт разности давления воды на нижнюю поверхность шарика и давления на его верхнюю поверхность, поскольку давление жидкости зависит от высоты её столба.

Сила давления ​ \( F_1 \) ​, действующая на верхнюю поверхность шарика, направлена вниз, сила давления \( F_2 \) , действующая на нижнюю поверхность шарика, направлена вверх. Так как \( F_2 \) больше \( F_1 \) , то результирующая этих двух сил, являющаяся выталкивающей силой, будет направлена вверх.

Выталкивающая сила тем больше, чем больше плотность жидкости, в которую погружено тело, и чем больше объём тела, погружённого в жидкость.

Опыт показывает, что выталкивающая сила ​ \( F \) ​ может быть вычислена по формуле: ​ \( F=\rho gV \) ​, где ​ \( \rho \) ​ — плотность жидкости, в которую погружено тело, ​ \( V \) ​ — объём погружённой части тела.

Выталкивающая сила равна произведению плотности жидкости, ускорения свободного падения и объёма погружённой части тела.

Этот закон называют законом Архимеда.

В воздухе, так же как и в любом другом газе, на тело действует выталкивающая сила. Она имеет ту же природу, что и выталкивающая сила, действующая на тело в жидкости. Её происхождение обусловлено разностью давлений на нижнюю и верхнюю грани тела. Однако, поскольку плотность газа намного меньше плотности жидкости, выталкивающая сила, действующая на тело, в газе меньше, чем в жидкости. Часто при решении задач пренебрегают выталкивающей силой, действующей на тело в воздухе, и считают, что вес покоящегося тела в воздухе равен по модулю действующей на него силе тяжести.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Ребёнка везут на санках по свежевыпавшему снегу. Какие санки — с широкими или узкими полозьями — следует выбрать, чтобы не проваливаться в снег?

1) с широкими
2) с узкими
3) безразлично
4) ответ зависит от веса санок

2. Брусок в форме прямоугольного параллелепипеда положили на стол сначала узкой гранью (1), а затем — широкой (2). Сравните силы давления (​ \( F_1 \) ​ и \( F_2 \) ) и давления (​ \( p_1 \) ​ и ​ \( p_2 \) ​), производимые бруском на стол в этих случаях.

1) ​ \( F_1=F_2; p_1>p_2 \) ​
2) \( F_1=F_2; p_1

3) \( F_1 \( F_1=F_2; p_1=p_2 \)

3. Сила ​ \( F_1 \) ​, действующая со стороны жидкости на один поршень гидравлической машины, в 16 раз меньше силы ​ \( F_2 \) ​, действующей на другой поршень. Как соотносятся модули работы ​ \( (A_1) \) ​ и \( (A_2) \) этих сил, совершаемой при перемещении поршней? Трением пренебречь.

1) ​ \( A_1=A_2 \) ​
2) \( A_1=16A_2 \)
3) \( A_2=16A_1 \)
4) \( A_1=4A_2 \)

4. В сосуды различной формы налита одна и та же жидкость. Высота уровня жидкости во всех сосудах одинакова. В каком из сосудов давление на дно наименьшее?

1) в сосуде А
2) в сосуде Б
3) в сосуде В
4) во всех сосудах одинаковое

5. Стеклянный сосуд, правое колено которого запаяно, заполнен жидкостью плотностью с (см. рисунок). Давление, оказываемое жидкостью на дно сосуда в точке Б, равно

1) ​ \( \rho gh_3 \) ​
2) \( \rho gh_1 \)
3) \( \rho g(h_1-h_2) \)
4) ​ \( \rho gh_2 \) ​

6. Атмосферное давление на вершине горы Казбек

1) меньше, чем у её подножия
2) больше, чем у её подножия
3) равно давлению у её подножия
4) может быть больше или меньше, чем у её подножия, в зависимости от погоды

7. В открытых сосудах 1 и 2 находятся соответственно ртуть и вода. Если открыть кран К, то

1) ни вода, ни ртуть перетекать не будут
2) вода начнёт перетекать из сосуда 2 в сосуд 1
3) перемещение жидкостей будет зависеть от атмосферного давления
4) ртуть начнёт перетекать из сосуда 1 в сосуд 2

8. Два однородных шара, один из которых изготовлен из стали, а другой — из олова, уравновешены на рычажных весах (см. рисунок). Нарушится ли равновесие весов,
если шары опустить в воду?

1) Равновесие весов не нарушится, так как шары одинаковой массы.
2) Равновесие весов нарушится — перевесит шар из стали.
3) Равновесие весов нарушится — перевесит шар из олова.
4) Равновесие весов не нарушится, так как шары опускают в одну и ту же жидкость.

9. Алюминиевый шар, подвешенный на нити, опущен в крепкий раствор поваренной соли. Затем шар перенесли из раствора поваренной соли в дистиллированную воду. При этом сила натяжения нити

1) может остаться неизменной или измениться в зависимости от объёма шара
2) не изменится
3) увеличится
4) уменьшится

10. Теплоход переходит из устья реки в солёное море. При этом архимедова сила, действующая на теплоход,

1) увеличится
2) уменьшится или увеличится в зависимости от размера теплохода
3) не изменится
4) уменьшится

11. Шарик, опущенный в жидкость, начинает опускаться на дно. Как по мере движения шарика в жидкости изменяются выталкивающая сила, действующая на него, вес шарика, давление жидкости? Установите соответствие между физическими величинами и характером их изменения. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) выталкивающая сила
Б) вес
B) давление жидкости

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИН
1) увеличивается
2) уменьшается
3) не изменяется

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) атмосферное давление можно рассчитать так же, как давление жидкости на дно сосуда.
2) в опыте Торричелли можно ртуть заменить водой при той же длине трубки.
3) для того, чтобы столб воды производил на дно сосуда такое же давление, что и столб керосина, его высота должна составлять 0,8 от высоты столба керосина.
4) на вершине горы атмосферное давление меньше, чем у её подножия.
5) закон Паскаля справедлив для газов, жидкостей и твёрдых тел.

Часть 2

13. Камень весит в воздухе 6 Н, а в воде 4 Н. Чему равен объём этого камня?

Источник

Adblock
detector