Меню

Шток насоса высокого давления

Лада 4×4 3D Джип из детства › Бортжурнал › Толкатель (шток) топливного насоса, быстрый износ, закалка. Замена датчика уровня топлива

Ну что же, после того как я сменил шток на пробеге 79407 км и довольный на прущей машине прокатился на Волгу, думал всё – Нива ПОЕХАЛА. Поехать-то она поехала, только не долго…

Всю оставшуюся зиму машина простояла в гараже без единого выезда, усиленно делал ремонт на кухне, некогда кататься было. Ну и вот пришла весна, началась, запланированная 2 года назад, перестройка гаража и пересаживаюсь я на Ниву, ибо на ней гораздо удобнее стройматериалы возить, чем на Тойоте-пузотёрке. Заехал утром на стройбазу, взял цемента, и решил подбросить девушку до работы – 7-8 км, а дальше уже в гараж. Но не суждено нам было доехать до её работы без приключений. Машина просто заглохла, не доехав пару км до места назначения. Капот открыл, бензин накачал, о чудо – завелась и поехала, 200 метров, потом опять заглохла! Всё ясно – что-то с приводом бензонасоса, но шток же новый, что там ещё может быть? Доезжаем до работы на ручной подкачке, мучая аккумулятор постоянными пусками. Потом уже я один, таким образом, на аварийке еду 3 км до ближайшего магазина, благо недалеко. Магазин ещё закрыт, снимаю бензонасос и что я вижу! Шток стёрло в пыль, осталась только завёрнутая «юбочка» из фольги!

Смотрю на пробег – 79462 км. Не может быть, пройдено 55 км и такой износ. Начинаю думать, я совершенно ничего не трогал в этой системе с момента замены насоса, насос заменён почти сразу после покупки машины, с ним и старым штоком пройдено 1870 км. Т.е. такое качество штока? Да не может быть! Покупаю сразу пару новых штоков, и правильно, как потом выяснилось.

Ну точно, 2,5-3 мм штока испарилось за 55 км. Бракованный наверно попался, ага… Ставлю новый шток, и машина сразу попёрла, ну думаю, зашибись, теперь-то всё отлично будет. Покатался пару дней, еду в гараж и всё те же симптомы – просто глохнет и всё! Новый шток в запасе, недолго думая, на обочине снимаю насос и что я вижу? Правильно – всё то же самое!

Смотрю пробег – 79499 км! Это рекорд, товарищи, шток размотало за 37 км! Я заправляюсь реже в 10 раз, чем штоки бензонасоса меняю! Ставлю запасной шток и еду в гараж, так это дело уже оставлять нельзя. По дороге покупаю ещё пару штоков в разных магазинах, но везде одно и то же, все как клонированные – ясно, поставщик один и тот же.

Снимаю в очередной раз насос, пробег – 79518 км. Вот что стало с пластилиновым штоком за 19 км пути.

Сомнений нет, штоки сделаны из дерьма! Попытки найти производства СССР на Авито закончились безуспешно. Полез в интернет читать, и понял, что я не одинок, только большинство таких проблем приходилось на середину 2000-х – нало 10-х годов, а потом, в принципе, и карбюраторов-то почти не стало. Но всё же наткнулся на обсуждение, где человек решил проблему крайне банально, он тупо закалил концы! Чем я хуже? 🙂

Собрал все свои штоки: родной, 3 поношенных и 2 новых.

Взял какой-то стёртый на пробу, нагрел до красна, на сколько способна обычная газовая горелка.

И просто кинул его в холодную воду.

Проверку сделал молотком. Ударил по этому закалённому концу, он треснул и немного расплющился.

Вроде достаточно жёсткий и хрупкий по структуре получился, но не как стекло.

В итоге закалил концы у новых штоков таким же образом. Один установил, второй в запас.

На пробеге 79570 км, т.е. через 52 км после закалки, снова снял насос и всё проверил. С закалённого конца шток не сносился, только отполировался.

Со стороны насоса не калил, но износа так же нет.

На кулачке тоже какой-либо грубой выработки не замечено. Пока…

По сей день машина прям ЕДЕТ, в горку на 4, обгоны в горку на 3 с газом в пол, бензина хватает. Главное, чтобы я не сделал шток твёрже кулучка, хотя таким кустарным способом это мало вероятно, как мне кажется, но через 500 км я всё же насос опять сниму и всё осмотрю.

Дополнение от 04.08.2020, машина прошла 1500 км после установки закалённого штока, и я начал ощущать нехватку бензина на трассе в горку на 4 передаче. Шток вынул, износ закалённой части где-то 0,7-0,8 мм, кулачок в норме, в городском трафике этого износа не заметно, на трассе ощутимо. Поставил новый закалённый шток и опять помчал как надо!

Ну и в процессе ковыряния со штоками я всё же решился заменить датчик уровня топлива, а то непойми что показывал. При баке под горловину 3/4 казал и где 0 я вообще не понимал. Датчик 21213-3827010 ценой ну прям вообще не порадовал – 495 руб.

Думал замучаюсь менять, ан нет. Сиденья передние сложил, задний диван откинул вперёд, коврик туда же и доступ обеспечен.

Ну а там дело техники – несколько гаек да пара хомутов. Потом упёр датчик в крайнее верхнее положение и всё равно не нравится мне как показывает, чуть не доходит до правой метки. Решил разобрать приборку, чтобы снять стрелку и переставить как мне надо, но стрелку у меня снять не получилось, не понял я как они крепятся. В итоге верхнее положение датчика вот.

Читайте также:  Каждый день с утра высокое давление

Буду привыкать, деваться некуда.

Затраты:
Шток (Сормовский поворот, Автолюбитель) 2 шт. – 120 руб.;
Шток (Lada Деталь у канала) – 60 руб.;
Шток (Филатов) – 55 руб.;
Датчик уровня топлива – 495 руб.

Источник

VoVik-VW › Блог › Изучаем ТНВД

Топливный насос высокого давления (сокр. ТНВД) — одно из основных и сложных устройств дизельного мотора. Он подает топливо в двигатель. Качественный ремонт дизельного ТНВД требует профессиональное оборудование для диагностики и регулировки. Наша специализированная станция оснащена таким оборудованием.

В подавляющем большинстве случаев, ремонт ТНВД необходим по причине применения низкокачественного топлива и моторных масел. При попадании с дизтопливом твердых частиц, пыли и т.п. способствует выходу из строя плунжерных пар, установка которых производится с микронным допуском. Также могут пострадать форсунки отвечающие за распыление и впрыск горючего. Основными признаками несправности в работе насоса и форсунок являются: увеличение расхода, дымность, посторонние шумы, снижение мощности, трудный запуск.

Самые современные моторы стали оснащаться электронными системами впрыска. Теперь ЭБУ отвечает за дозировку подачи топлива в цилиндры по времени и по количеству солярки. При появлении каких либо перебоев в работе следует, не откладывая, обратиться в дизель-сервис с профессиональным диагностическим оборудованием. В ходе ремонта топливного насоса высокого давления потребуется замена некоторых деталей. Диагностика позволяет определить степень износа и остаточный ресурс запчастей, позволяя съэкономить (не менять же всё подряд).

В ходе работ выясняется равномерность подачи топлива, стабильность давления, частота вращения вала и т.д.

По мере ужесточения норм допустимого выброса вредных веществ в атмосферу транспортными средствами, традиционные механические топливные насосы высокого давления (ТНВД) дизельных автомобилей оказались не в состоянии обеспечить необходимую точность дозирования топлива и скорость реагирования на изменяющиеся условия движения. Это привело к необходимости установки электронного регулирования топливной системы дизельного двигателя. Фирмами Bosch, Diesel Kiki и Nippon Denso был разработан ряд систем электронного управления подачей топлива на базе топливного насоса VЕ. Эти системы обеспечили повышение точности дозирования топлива в отдельные цилиндры, уменьшение межцикловой нестабильности процесса сгорания и уменьшение неравномерности работы дизеля в режиме холостого хода. В отдельных системах устанавливается быстродействующий клапан, который позволяет разделить процесс впрыска на две фазы, что уменьшает жесткость процесса сгорания.

Точное регулирование системы впрыска, не только способствует снижению выброса токсичных веществ в результате более полного сгорания топлива, но и повышает КПД двигателя и увеличение мощности.

В электронных системах применяются топливные насосы распределительного типа, которые дополнены управляемыми исполнительными устройствами для регулирования положения дозатора и клапана автомата опережения впрыска топлива.

Электронный блок управления получает сигналы от множества датчиков, таких как положения педали акселератора, частоты вращения вала двигателя, температуры охлаждающей жидкости и топлива, подъема иглы форсунок, скорости движения автомобиля, давления наддува и температуры воздуха на впуске.

Эти сигналы обрабатываются в электронном блоке управления. Суммированный сигнал посылается в ТНВД, обеспечивая подачу оптимального количества топлива к форсункам и оптимальный угол опережения впрыска в соответствии с эксплуатационными условиями. Если подключается дополнительная нагрузка (например, включают кондиционер воздуха), то в электронный блок управления приходит соответствующий сигнал, и дополнительная нагрузка компенсируется увеличением подачи топлива. Электронный блок управления также контролирует работу свечей накаливания в трех стадиях – период накаливания, установившийся режим работы свечей накаливания и период после накаливания, в зависимости от температуры.

Управление процессами топливоподачи осуществляется с помощь блока управления 6. В блок управления поступает информация от различных датчиков: начала впрыска 1, установленного в одной из форсунок впрыска топлива; верхней мертвой точки и частоты вращения коленчатого вала 2; расходомера воздуха 3; температуры охлаждающей жидкости 4; положения педали топлива 5 и др. В соответствии с заданными в памяти блока управления характеристиками управления и полученной информацией от датчиков блок управления выдает выходные сигналы на исполнительные механизмы управления цикловой подачей и углом опережения впрыска топлива. Таким образом, регулируется величина цикловой подачи топлива от холостого хода до режима полной нагрузки, а также во время холодного пуска.

Потенциометр исполнительного устройства посылает сигнал обратной связи в электронный блок управления, определяя точное положение дозирующей муфты. Угол опережения впрыскивания топлива регулируется подобным же образом.

Электронный блок управления формирует сигналы, обеспечивающие протекание регуляторных характеристик, стабилизацию частоты вращения холостого хода, рециркуляцию ОГ, степень которой определяется по сигналам датчика массового расхода воздуха. При этом в блоке управления сопоставляются реальные сигналы датчиков со значениями в запрограммированных полях характеристик, в результате чего на сервомеханизм исполнительных устройств передается выходной сигнал, обеспечивающий требуемое положение дозирующей муфты с высокой точностью регулирования.

В систему заложена программа самодиагностики и отработки аварийных режимов, что позволяет обеспечить движение автомобиля при большинстве неисправностей, кроме выхода из строя микропроцессора.

В большинстве случаев, для одноплунжерных насосов высокого давления распределительного типа, в качестве исполнительного устройства, регулирующего цикловую подачу, используется электромагнит 6 (рис.) с поворотным сердечником, конец которого соединен через эксцентрик с дозирующей муфтой 5. При прохождении тока в обмотке электромагнита сердечник поворачивается на угол от 0 до 60°, соответственно перемещая дозирующую муфту 5, с помощью которой происходит изменение цикловой подачи.
Основным элементом системы является электромагнитное исполнительное устройство 10, которое перемещает дозирующую муфту ТНВД.

Читайте также:  Пульс давление когда стоишь

Управление автоматом опережения впрыска осуществляется электромагнитным клапаном 2, который регулирует давление топлива, действующего на поршень автомата. Клапан работает в импульсном режиме «открыт — закрыт», модулируя давление в зависимости от частоты вращения распределительного вала двигателя. Когда клапан открыт, давление уменьшается, и угол опережения впрыскивания также уменьшается. Когда клапан закрыт, давление увеличивается, перемещая поршень автомата в сторону увеличения угла опережения впрыска. Отношение импульсов определяется электронным блоком в зависимости от режима работы и температурного состояния двигателя. Для определения момента начала впрыска одна из форсунок имеет индукционный датчик подъема иглы.

В качестве исполнительных механизмов, воздействующих на органы, управляющие подачей топлива в ТНВД, применяются пропорциональные электромагнитные, моментные, линейные или шаговые электродвигатели, которые служат в качестве непосредственного привода дозатора топлива в насосах распределительного типа.

В корпус форсунки встроена катушка возбуждения 2 (рис.), на которую электронный блок управления подает определенное опорное напряжение, чтобы ток в электрической цепи поддерживался постоянным, независимо от изменений температуры.

Этот ток создает вокруг катушки магнитное поле. Как только игла форсунки поднимается, сердечник 3 изменяет магнитное поле, вызывая изменение сигнала напряжения. В определенный момент подъема иглы возникает пиковый импульс, который воспринимается электронным блоком управления и используется для управления углом опережения впрыска. Этот сигнал сравнивается с хранящимися в памяти электронного блока значениями для соответствующих эксплуатационных условий работы дизеля. Электронный блок управления посылает обратный сигнал на электромагнитный клапан, соединенный с рабочей камерой автомата опережения впрыскивания и давление, действующее на поршень автомата, изменяется, в результате чего поршень перемещается под действием пружины, изменяя угол опережения впрыскивания.

Максимальное давление впрыска, достигаемое электронным управлением топливоподачей на базе топливного насоса VЕ составляет 150 кгс/см2. Однако ресурсы этой конструктивной схемы по напряжениям в сложном кулачковом приводе практически исчерпаны. Более совершенными являются ТНВД следующего поколения – VP-44.

Она использована на последних моделях дизелей Opel Ecotec, Opel Astra, Audi, Ford, BMW, Daimler-Chrysler. Давление впрыска, развиваемое насосами такого типа достигает 1000 кгс/см2.

Особенностью приведенной системы является совмещенный блок управления как для ТНВД, так и для других систем двигателя. Блок управления состоит из двух частей, оконечные каскады, питания электромагнитов которых расположены на корпусе ТНВД.

Контур низкого давления. Топливоподкачивающий насос (рис.) в ТНВД VP-44 шиберного типа, аналогичный рассмотренным выше. Давление топлива, создаваемое топливоподкачивающим насосом на стороне нагнетания, зависит от частоты вращения колеса насоса. В то же время это давление при возрастании частоты вращения увеличивается непропорционально. Клапан регулирования давления располагается в непосредственной близости от топливоподкачивающего насоса и соединяется с отводящим пазом через отверстие, пропускающее поток 5. Клапан изменяет давление нагнетания, создаваемое топливоподкачивающим насосом, в зависимости от требуемого расхода топлива. Топливо от топливоподкачивающего насоса поступает к насосной секции ТНВД и устройству опережения впрыскивания.

Если создаваемое давление топлива превышает определенную величину, торцевая кромка поршня 3 открывает отверстия, расположенные радиально, и через них поток топлива сливается по каналам насоса к подводящему пазу. Если давление топлива слишком мало, эти радиальные отверстия закрыты вследствие преобладания сил пружины. Предварительный натяг пружины определяет, таким образом, величину давления открытия клапана.

Для охлаждения топливоподкачивающего насоса и удаления из него воздуха топливо проходит через привинченный к корпусу насоса клапан дросселирования перепуска 4.

Этот клапан осуществляет отвод топлива через перепускной канал 5. В корпусе клапана находится нагруженный пружиной шарик, который позволяет вытекать топливу только по достижении определенной величины давления в канале.

Дроссель 6 очень малого диаметра, связанный с линией отвода, расположен в корпусе клапана параллельно основному каналу отвода топлива. Он обеспечивает автоматическое удаление воздуха из насоса. Весь контур низкого давления ТНВД рассчитан на то, что в топливный бак через клапан дросселирования перепуска всегда перетекает некоторое количество топлива.

Контур высокого давления. В контур высокого давления (рис.) входят ТНВД, а также узел распределения и регулирования величины и момента начала подачи с использованием только одного элемента — электромагнитного клапана высокого давления. Создание высокого давления насосной секции ТНВД с радиальным движением плунжеров

Насосная секция ТНВД с радиальным движением плунжеров создает требуемое для впрыскивания давление величиной до 1000 кгс/см2. Она приводится через вал и включает в себя: — соединительную шайбу; — башмаки 4 с роликами 2; — кулачковую шайбу 1; — нагнетающие плунжеры 5; — переднюю часть (головку) вала-распределителя 6.

Крутящий момент от приводного вала передается через соединительную шайбу и шлицевое соединение непосредственно на вал-распределитель. Направляющие пазы 3 служат для того, чтобы через башмаки 4 и сидящие в них ролики 2 обеспечить работу нагнетающих плунжеров 5 сообразно внутреннему профилю кулачковой шайбы 1. Количество кулачков на шайбе соответствует числу цилиндров двигателя. В корпусе вала-распределителя нагнетающие плунжеры расположены радиально, что и дало название этому типу ТНВД. На восходящем профиле кулачка плунжеры совместно выдавливают топливо в центральную камеру высокого давления 7. Е зависимости от числа цилиндров двигателя и условий его применения существуют варианты ТНВД с двумя, тремя или четырьмя нагнетающими плунжерам (рис. 9 а, b, с).

Читайте также:  Красные губы при повышенном давлении

Распределение топлива с помощью корпуса-распределителя Корпус-распределитель (рис. 9) состоит из:

• пригнанной к нему распределительной втулки 3;

• расположенной в распределительной втулке задней части вала-распределителя 2;

• запирающей иглы 4 электромагнитного клапана 7 высокого давления;

• аккумулирующей мембраны 10, разделяющей полости подкачки и слива;

• штуцера 16 магистрали высокого давления с нагнетательным клапаном 15.

В фазе наполнения на нисходящем профиле кулачков радиально движущиеся плунжеры 1 перемещаются наружу, к поверхности кулачковой шайбы. Запирающая игла 4 при этом находится в свободном состоянии, открывая канал впуска топлива. Через камеру низкого давления 12, кольцевой канал 9 и канал иглы топливо направляется от топливоподкачивающего насоса по каналу 8 вала-распределителя и заполняет камеру высокого давления. Излишек топлива вытекает через канал 5 обратного слива.

В фазе нагнетания плунжеры 1 при закрытой игле 4 перемещаются на восходящем профиле кулачков к оси вала-распределителя, повышая давление в камере высокого давления.

Благодаря этому топливо под высоким давлением движется по каналу 8 камеры высокого давления. Затем топливо через распределительную канавку 13, которая в этой фазе соединяет вал-распределитель 2 с выпускным каналом 14, штуцер 16 с нагнетательным клапаном 15, магистраль высокого давления и форсунку поступает в камеру сгорания двигателя.

Дозирование топлива с помощью электромагнитного клапана высокого давления.

Для дозирования цикловой подачи в контур высокого давления ТНВД встроен электромагнитный клапан высокого давления. В начале процесса впрыскивания на катушку 5 электромагнита подается напряжение, и якорь 4 перемещает иглу 4, прижимая ее к седлу 1. Если игла постоянно прижата к седлу, топливо не поступает, поэтому давление топлива в контуре быстро поднимается, открывая, таким образом, соответствующую форсунку. После того как необходимое количество топлива попало в камеру сгорания, напряжение с катушки 5 электромагнита снимается, электромагнитный клапан высокого давления открывается и давление в контуре снижается. Это влечет за собой запирание форсунки и окончание впрыскивания.

Точность управления этим процессом зависит от момента окончания работы электромагнитного клапана, что определяется моментом снятия напряжения с катушки.

К электромагнитному клапану 7 высокого давления по сигналу блока управления ТНВД в катушку электромагнита подается напряжение, и якорь перемещает иглу 4, прижимая ее к седлу 1. Если игла прижата к седлу, топливо поступает только в выпускной канал высокого давления 14 соединенный с нагнетательным клапаном 15, где давление резко повышается, а от него к форсунке. Дозирование подачи топлива определяется интервалом между моментом начала подачи и моментом открытия электромагнитного клапана и называется продолжительностью подачи. Продолжительность закрытия электромагнитного клапана, определяемая блоком управления, регулирует, таким образом, величину цикловой подачи топлива. После окончания впрыска, электромагнит клапана обесточивается, при этом электромагнитный клапан высокого давления открывается, и давление в контуре снижается, прекращая подачу топлива к форсунке.

Избыточное топливо, которое нагнетается вплоть до прохождения роликом плунжера верхней точки профиля кулачка, направляется через специальный канал в пространство за аккумулирующей мембраной. Скачки высокого давления, которые при этом возникают в контуре низкого давления, демпфируются аккумулирующей мембранной. Кроме того, это пространство сохраняет аккумулированное топливо для процесса наполнения перед последующим впрыскиванием.

Дня останова двигателя с помощью электромагнитного клапана полностью прекращается нагнетание под высоким давлением. Следовательно, не требуется дополнительный остановочный клапан, как это имеет место в распределительных ТНВД с управлением регулирующей кромкой.

Демпфирование волн давления с помощью нагнетательного клапана с дросселированием обратного потока. Нагнетательный клапан 15 с дросселированием обратного потока в конце очередного впрыскивания топлива предотвращает новое открытие распылителя форсунки, что исключает появление подвпрыскивания, которое возможно в результате появления волн давления или их отражений. Подвпрыскивание отрицательно сказывается на токсичности ОГ.

С началом подачи конус 3 клапана открывает клапан. Теперь топливо нагнетается через штуцер и магистраль высокого давления к форсунке. По окончании нагнетания давление топлива резко падает, и возвратная пружина прижимает конус клапана к его седлу. Обратные волны давления, возникающие при закрытии форсунки, гасятся дросселем нагнетательного клапана, что предотвращает подвпрыскивание топлива в камеру сгорания.

Устройство опережения впрыскивания топлива. Наиболее благоприятно процесс сгорания, равно как и лучшая отдача дизеля по мощности, протекает только в том случае, когда момент начала сгорания соответствует определенному положению коленчатого вала или поршня в цилиндре. Задачей устройства опережения впрыскивания является увеличение угла начала подачи топлива при повышении частоты вращения коленчатого вала. Это устройство, состоящее из датчика угла поворота приводного вала ТНВД, блока управления и электромагнитного клапана установки момента начала впрыскивания, обеспечивает оптимальный момент начала впрыскивания соответственно условиям эксплуатации двигателя, чем компенсирует временной сдвиг, определяемый сокращением периода впрыскивания и воспламенения при увеличении частоты вращения.

Устройство опережения впрыскивания, оснащенное гидравлическим приводом, встроено в нижнюю часть корпуса ТНВД поперек его продольной оси.

Кулачковая шайба 1 входит своей шаровой цапфой 2 в поперечное отверстие плунжера 3 так, что поступательное движение последнего превращается в поворот кулачковой шайбы. В середине плунжера находится регулировочный клапан 5, который открывает и закрывает управляющие отверстия в плунжере. По оси плунжера 3 расположен нагруженный пружиной 10 управляющий поршень 12, который задает положение регулировочного клапана.

Поперек оси плунжера находится электромагнитный клапан 15 установки момента начала впрыскивания. Блок управления ТНВД воздействует на плунжер устройства опережения впрыскивания с помощью этого клапана (рис.), на который непрерывно подаются импульсы тока постоянной частоты и переменной скважности. Клапан изменяет давление, действующее на управляющий поршень.

Источник

Adblock
detector